CORR 99-38

Minimum distance bounds for s-regular codes

William J. Martin*

Abstract A code $C \subseteq F^n$ is s-regular provided, for every vertex $x \in F^n$, is x is at distance at most s from C then the number of codewords $y \in C$ at distance i from x depends only on i and the distance from x to C. If ρ denotes the covering radius of C and C is ρ -regular, then C is said to be completely regular.

Suppose C is a code with minimum distance d, strength t as an orthogonal array, and dual degree s^* . We prove that $d \leq 2t + 1$ when C is completely regular (with the exception of binary repetition codes). The same bound holds when C is (t+1)-regular. For unrestricted codes, we show that $d \leq s^*+t$ unless C is a binary repetition code.