CORR 99-61

Constructions of Orthomorphisms of \mathbb{Z}_2^n

Solomon W. Golomb*, Guang Gong & Lothrop Mittenthal*

Abstract A permutation σ on \mathbb{Z}_2^n , the linear space consisting of *n*-bit numbers, is an orthomorphism if the mapping is also a permutation on \mathbb{Z}_2^n , as *x* takes all values in \mathbb{Z}_2^n . It is a linear orthomorphism if σ is a linear transformation on \mathbb{Z}_2^n . This paper contains two parts. In the first part, first, in terms of the isomorphism between the linear space \mathbb{Z}_2^n and the finite field $GF(2^n)$, an algebraic method of constructing linear orthomorphisms with the maximal cycles is provided. Then two algorithms to implement this type of linear orthomorphisms, a special type of Latin squares, called *Bar Sinister Latin squares* are constructed and nonlinear orthomorphisms, which can be represented as transversals, are constructed. some discussion on nonlinearity of this type of nonlinear orthomorphisms and a construction of arbitrary nonlinear orthomorphisms are included in this part. A motivation is to use such mappings for encryption of digital data.

Key Words Linear/nonlinear orthomorphism, Latin square, algorithm, finite field.