CORR 2000-10

Exact largest and smallest size of components in decomposable structures

Daniel Panario* \& Bruce Richmond

Abstract

Golomb \& Gaal [14] study the number of permutations on n objects with largest cycle length equal to k. They give explicit expressions on ranges $n /(i+1)<k \leq n / i$ for $i=1,2, \ldots$, derive a general recurrence for the number of permutations of size n with largest cycle length equal to k, and provide the contribution of the ranges $(n /(i+1), n / i]$ for $i=1,2, \ldots$, to the expected length of the largest cycle.

We view a cycle of a permutation as a component. We provide exact counts for the number of decomposable combinatorial structures with largest and smallest components of a given size. These structures include permutations, polynomials over finite fields, and graphs among many others (in both the labelled and unlabelled cases). The contribution of the ranges $(n /(i+1), n / i]$ for $i=1,2, \ldots$, to the expected length of the smallest and largest component is also studied.

Keywords largest and smallest components, random decomposable combinatorial structures, exponential class.

