CORR 2000-27

On complexity of Squaring Using Polynomial Basis in $G F\left(2^{m}\right)$

Huapeng Wu

Abstract

In this paper, the complexity of a squaring operation using polynomial basis (PB) in a class of finite fields $G F\left(2^{m}\right)$ is evaluated. The main results are as follows:

1. When the field is generated with an irreducible trinomial $f(x)=x^{m}+$ $x^{k}+1,1 \leq k \leq \frac{m}{2}$, where both m and k are odd, a PB squaring operation requires $\frac{m-1}{2}$ bit operations.
2. When the field is generated with an irreducible trinomial $f(x)=x^{m}+$ $x^{k}+1,1 \leq k \leq \frac{m}{2}$, where $m+k$ is odd and $k \neq \frac{m}{2}$, a PB squaring operation requires $\frac{m+k-1}{2}$ bit operations.
3. When the field is generated with an irreducible trinomial $f(x)=x^{m}+$ $x^{\frac{m}{2}}+1$, a PB squaring operation requires $\frac{m+2}{4}$ bit operations.
