CORR 2000-27

On complexity of Squaring Using Polynomial Basis in $GF(2^m)$

Huapeng Wu

Abstract In this paper, the complexity of a squaring operation using polynomial basis (PB) in a class of finite fields $GF(2^m)$ is evaluated. The main results are as follows:

- 1. When the field is generated with an irreducible trinomial $f(x) = x^m + x^k + 1$, $1 \le k \le \frac{m}{2}$, where both m and k are odd, a PB squaring operation requires $\frac{m-1}{2}$ bit operations.
- 2. When the field is generated with an irreducible trinomial $f(x) = x^m + x^k + 1$, $1 \le k \le \frac{m}{2}$, where m + k is odd and $k \ne \frac{m}{2}$, a PB squaring operation requires $\frac{m+k-1}{2}$ bit operations.
- 3. When the field is generated with an irreducible trinomial $f(x) = x^m + x^{\frac{m}{2}} + 1$, a PB squaring operation requires $\frac{m+2}{4}$ bit operations.