CORR 2000-36

On Modular Reduction

Huapeng Wu

Abstract

In this paper, an algorithm to partially evaluate modular reduction without division is proposed. A proof of the correctness of the algorithm is given. For a family of generalized Mersenne numbers $N=2^{n}-2^{m}-1,0<$ $m<\frac{n+1}{2}$, we show that the modular reduction operation $A \bmod N$, where $A<N^{2}$, can be reduced to

$$
A \bmod N \equiv A_{1}+A_{2}+A_{4}+2^{m}\left(A_{3}+A_{4}\right)
$$

where $A \triangleq A_{1}+A_{2} \times 2^{n}, 0 \leq A_{1} \leq 2^{n}-1$, and $A_{2} \triangleq A_{3}+A_{4} \times 2^{n-m}-1$. For another family of generalized Mersenne numbers $N=2^{n}-2^{m}-2^{m_{1}}-1,0<$ $m_{1}<m<\frac{n+1}{2}$, we find that the modular reduction operation A and N, where $A<N^{2}$, can be partially solved as

$$
\begin{aligned}
A \bmod N \equiv & A_{1}+A_{2}+A_{4}+A_{6}+2^{m}\left(A_{3}+A_{4}+A_{6}\right)+ \\
& 2^{m_{1}}\left(A_{3}+A_{4}+A_{6}+A_{5} \times 2^{n-m}\right)
\end{aligned}
$$

where $A \triangleq A_{1}+A_{2} \times 2^{n}, 0 \leq A_{1} \leq 2^{n}-1, A_{2} \triangleq A_{3}+A_{4} \times 2^{n-m}, 0 \leq A_{3} \leq$ $2^{n-m}-1$, and $A_{4} \triangleq A_{5}+A_{6} \times 2^{m-m-1}-1$.

Keywords Modular arithmetic, public-key cryptosystems.

