CORR 2000-44

Quantum Appropriate Amplification and Estimation

Gilles Brassard*, Peter Høyer*, Michele Mosca, & Alain Tapp

Consider a Boolean function $\mathcal{X}: X \to \{0,1\}$ that partitions Abstract set X between its good and bad elements, where x is good if $\mathcal{X}(x) = 1$ and bad otherwise. Consider also a quantum algorithm \mathcal{A} such that $\mathcal{A}|n0\rangle =$ $\sum_{x \in X} \alpha_x |x\rangle$ is a quantum superposition of the elements of X, and let a denote the probability that a good element is produced if $A|0\rangle$ is measured. If we repeat the process of running \mathcal{A} , measuring the output, and using \mathcal{X} to check the validity of the result, we shall expect to repeat 1/a times on the average before a solution is found. Amplitude amplification is a process that allows to find a good x after an expected number of applications of A and its inverse which is proportional to $1/\sqrt{a}$, assuming algorithm \mathcal{A} makes no measurements. This is a generalization of Grover's searching algorithm in which \mathcal{A} was restricted to producing an equal superposition of all members of X and we had a promise that a single x existed such that $\mathcal{X}(x) = 1$. Our algorithm works whether or not the value of a is known ahead of time. In case the value of a is known, we can find a good x after a number of applications of \mathcal{A} and its inverse which is proportional to $1/\sqrt{a}$ even in the worst case. We show that this quadratic speedup can also be obtained for a large family of search problems for which good classical heuristics exist. Finally, as our main result, we combine ideas from Grover's and Shor's quantum algorithms to perform amplitude estimation, a process that allows to estimate the value of a. We apply amplitude estimation to the problem of approximate counting, in which we wish to estimate the number of $x \in X$ such that $\mathcal{X}(x) = 1$. We obtain optimal quantum algorithms in a variety of settings.

Keywords Quantum computation. Searching. Counting. Lower bound.