CORR 2001-02

Arrangements, Circular Arrangements and the Crossing Number of $C_{7} \times C_{n}$

Jay Adamsson*, R. Bruce Richter

Abstract

Motivated by the problem of determining the crossing number of the Cartesian product $C_{m} \times C_{n}$ of two cycles, we introduce the notion of an (m, n) -arrangement, which is a set $\left\{S, T, C_{1}, C_{2}, \ldots, C_{n}\right\}$ of closed curves and a set $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ of paths in the plane, such that S and T are disjoint and in the same face of $C_{1} \cup C_{2} \cup \ldots \cup C_{n}$, each P_{i} joins a point on S to a point on T, and each P_{i} has a vertex $v_{i, j}$ on C_{j} so that in traversing P_{i} from S to T, the $v_{i, j}$ occur in the order $v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}$. The main result is that every (m, n)-arrangement has at least $(m-2) n$ crossings. This is used to show that " m, n)-circular arrangements" (no S and T and the P_{i} are closed curves) which can be broken up into disjoint arrangements have ($m-2$) n crossings. This last fact implies that the crossing number of $C_{7} \times C_{n}$ is $5 n$, in agreement with the general conjecture that the crossing number of $C-m \times C_{n}$ is $(m-2) n$, for $3 \leq m \leq n$.

