CORR 2001-19

Further Results on mean Colour Numbers

F.M. Dong

Abstract

Let $P(G, \lambda)$ denote the chromatic polynomial of a graph G. Dong has proved that $(\lambda-2)^{n-1} P(G, \lambda)-\lambda(\lambda-1)^{n-2} P(G, \lambda-1) \geq 0$ for $\lambda \geq n$ if G is connected, where n is the vertex number of G. This result implies that $P(G, n) / P(G, n-1) \geq n^{n} /(n-1)^{n}$, which was a conjecture proposed by Bartels and Welsh. In this paper, we give a different and simpler proof to Dong's result and further prove a stronger result that $(\lambda-3)^{n-2} P(G, \lambda)-\lambda(\lambda-2)^{n-3} P(G, \lambda-1) \geq 0$ for $\lambda \geq n$, where G is a graph whose vertex set has an ordering $x_{1}, x_{2}, \ldots, x_{n}$ such that x_{i} is contained in a clique K_{3} of the subgraph $G\left[V_{i}\right]$ for $i=3,4, \ldots, n$ where $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$.

Keywords Chromatic polynomial, colouring, mean colour number

