CORR 2001-43

Construction of Symmetric Balanced Squares with Blocksize More than One

Palash Sarkar and Paul J. Schellenberg

Introduction By a symmetric balanced square with blocksize k, order v and side s we mean an $s \times s$ array in which every cell contains a subset of cardinality k from a set of elements V of cardinality v satisfying the following properties:

- 1. every element occurs in $\lfloor \frac{ks}{v} \rfloor$ or $\lceil \frac{ks}{v} \rceil$ cells of each row or column,
- 2. every element occurs in $\left\lfloor \frac{ks^2}{v} \right\rfloor$ or $\left\lceil \frac{ks^2}{v} \right\rceil$ cells of the array, and
- 3. the array is symmetric.

Note that it is inherent in our definition that $k \leq v$. Let, $m = \lfloor \frac{ks}{v} \rfloor$ (i.e. the integer part of $\frac{ks}{v}$) and $n = \lfloor \frac{ks^2}{v} \rfloor$. We shall use the notation $SBS_k(s,v)$ to denote such a symmetric balanced square. Observe that an SBS(s,s) is a symmetric Latin square of order s. We will use the notation SBS(s,v)to denote an $SBS_k(s,v)$ when k = 1. Dutta and Roy [?] have completely resolved the existence problem when k = 1. (The case k = 1 is also a special case of Theorem ?? and Theorem ??, which we prove later.)

Clearly there is an $SBS_k(1, v)$ for every positive integer k and every integer $v \ge k$. Suppose A is an $SBS_k(s, v)$. Dividing ks^2 by v, we obtain unique nonnegative integers n and r such that

$$ks^2 = vn + r$$
 where $0 \le r < v$,

or equivalently,

$$ks^{2} = r(n+1) + (v-r)(n).$$

This implies that A has r elements of frequency n + 1 and v - r elements of frequency n. Let d, e, δ and ϵ be integers such that

$$ks^{2} = r(n+1) + (v-r)(n) = \delta(d) + \epsilon(e),$$
(1)

where e is an even integer, $\{d, e\} = \{n, n+1\}$, and $\{\delta, e\} = \{r, v-r\}$. Then A has δ elements of odd frequency d and ϵ elements of even frequency e. An element of odd frequency d is defined to be an *odd element*, and an element of even frequency e is defined to be an *even element*. Since A is symmetric, every odd element is contained in an odd number of cells of the main diagonal. Thus, the number of odd elements cannot exceed ks; that is, $\delta < ks$. This observation is recorded in the following lemma.

Lemma 1 A necessary condition for the existence of an $SBS_k(s, v)$, where $k \leq v$, is that the number of odd frequency elements in the array is at most ks.

Lemma 1 and the discussion preceding it motivates the following definition.

Definition 2 We say that an $SBS_k(s, v)$ is feasible if $k \leq v$ and there exist nonnegative integers d, e, δ, ϵ satisfying Equation (1), such that d is odd, $\{d, e\} = \{n, n+1\}, \{\delta, e\} = \{r, v-r\} \text{ and } \delta \leq ks.$

The following result is an immediate application of Lemma 1.

Lemma 3 If 1 < s, $1 \le k \le v$ and $SBS_k(s, v)$ is feasible, then $v \le \frac{ks(s+1)}{2}$.

Proof Suppose $SBS_k(s, v)$ is feasible. We use Definition 2 to show that this necessarily implies $v \leq \frac{ks(s+1)}{2}$. Let the parameters r, δ and n be as defined in Definition 2. By the feasibility condition, we must have $\delta \leq ks$.

If $\delta = r$, then n is even and $ks^2 - vn = r \leq ks$. Since s > 1, 0 < r $ks^2 - ks \leq vn$ and hence n > 0. Since n is even,

$$2 \le n = \left\lfloor \frac{ks^2}{v} \right\rfloor \le \frac{ks^2}{v}.$$

This gives $v \leq \frac{ks^2}{2} < \frac{ks(s+1)}{2}$. If $\delta = v - r$, then n is odd and $v(n+1) - ks^2 = v - r = \delta \leq ks$. Since n is odd, $n \ge 1$ and

$$2v \le (n+1)v \le ks^2 + ks = ks(s+1).$$

Therefore, $v \leq \frac{ks(s+1)}{2}$.

This completes the proof.

It is possible to prove Lemma 3 directly by counting the maximum number of distinct elements possible in a symmetric $s \times s$ square where each cell can accommodate at most k elements. However, the proof we have provided shows that Lemma 3 is dependent on Lemma 1. Thus Lemma 1 is an independent necessary condition. The rest of the paper is devoted to providing evidence that this is also sufficient.

Lemma 4 There is an $SBS_k(s, v)$ if and only if there is an $SBS_{v-k}(s, v)$.

Proof Let A be an $SBS_k(s, v)$. If we replace the k-subset $A_{i,j}$ in row i and column j of A, for $1 \leq i, j \leq s$, by its complement, the result is an $SBS_{v-k}(s, v)$.

Remark 1 In light of Lemma 4, we assume throughout this paper that $k \leq \lfloor \frac{v}{2} \rfloor$.