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Introduction By a symmetric balanced square with blocksize k, order v
and side s we mean an s X s array in which every cell contains a subset of
cardinality k from a set of elements V' of cardinality v satisfying the following
properties:

1. every element occurs in VZ—SJ or (kv—ﬂ cells of each row or column,

2. every element occurs in {%J or [%-‘ cells of the array, and

3. the array is symmetric.

Note that it is inherent in our definition that k¥ < v. Let, m = LkU—SJ (i.e.
the integer part of %) and n = L%J We shall use the notation SBSk(s,v)
to denote such a symmetric balanced square. Observe that an SBS(s,s) is
a symmetric Latin square of order s. We will use the notation SBS(s,v)
to denote an SBSk(s,v) when k& = 1. Dutta and Roy [?] have completely
resolved the existence problem when k = 1. (The case k =1 is also a special
case of Theorem ?? and Theorem ?7, which we prove later.)

Clearly there is an SBSk(1,v) for every positive integer k and every inte-
ger v > k. Suppose A is an SBSk(s,v). Dividing ks? by v, we obtain unique
nonnegative integers n and r such that

ks?® = vn +r where 0<r<uw,

or equivalently,
ks? = r(n+1)+ (v —r)(n).

This implies that A has r elements of frequency n + 1 and v — r elements of
frequency n. Let d, e, § and € be integers such that

ks> =r(n+1)+ (v —r)(n) =8(d) + ee), (1)
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where e is an even integer, {d,e} = {n,n + 1}, and {d,¢} = {r,v — r}.
Then A has ¢ elements of odd frequency d and € elements of even frequency
e. An element of odd frequency d is defined to be an odd element, and an
element of even frequency e is defined to be an even element. Since A is
symmetric, every odd element is contained in an odd number of cells of the
main diagonal. Thus, the number of odd elements cannot exceed ks; that is,
& < ks. This observation is recorded in the following lemma.

Lemma 1 A necessary condition for the existence of an SBSk(s,v), where
k <w, is that the number of odd frequency elements in the array is at most
ks. O

Lemma 1 and the discussion preceeding it motivates the following defini-
tion.

Definition 2 We say that an SBSk(s,v) is feasible if & < v and there
exist nonnegative integers d, e, §, € satisfying Equation (1), such that d is odd,
{d,e} ={n,n+ 1}, {8, ¢} ={r,v—r} and 6 < ks.

The following result is an immediate application of Lemma 1.
Lemma 3 [f1 <s, 1<k <wvand SBSk(s,v) is feasible, then v < w

Proof Suppose SBSi(s,v) is feasible. We use Definition 2 to show that this
necessarily implies v < w Let the parameters r,é and n be as defined
in Definition 2. By the feasibility condition, we must have § < ks.

If § = r, then n is even and ks? —vn = r < ks. Since s > 1, 0 <

ks* — ks < vn and hence n > 0. Since n is even,

V{SZJ ks?
9<n= | <X

v v

This gives v < % < w
If § =v—r, then nis odd and v(n+1) —ks* =v —r = § < ks. Since n

is odd, n > 1 and
20 < (n+1)v < ks? + ks = Es(s +1).

Therefore, v < w



This completes the proof. a

It is possible to prove Lemma 3 directly by counting the maximum num-
ber of distinct elements possible in a symmetric s X s square where each cell
can accommodate at most k elements. However, the proof we have provided
shows that Lemma 3 is dependent on Lemma 1. Thus Lemma 1 is an inde-
pendent necessary condition. The rest of the paper is devoted to providing
evidence that this is also sufficient.

Lemma 4 There is an SBSk(s,v) if and only if there is an SBS,_k(s,v).

Proof Let A be an SBSi(s,v). If we replace the k-subset A, ; in row ¢
and column j of A, for 1 < ¢,7 < s, by its complement, the result is an

SBS,_k(s,v). O

Remark 1 In light of Lemma 4, we assume throughout this paper that k <
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