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Introduction By a symmetric balanced square with blocksize k, order v

and side s we mean an s � s array in which every cell contains a subset of
cardinality k from a set of elements V of cardinality v satisfying the following
properties:

1. every element occurs in
�
ks

v

�
or

�
ks

v

�
cells of each row or column,

2. every element occurs in
j

ks2

v

k
or

l
ks2

v

m
cells of the array, and

3. the array is symmetric.

Note that it is inherent in our de�nition that k � v. Let, m = bks

v
c (i.e.

the integer part of ks

v
) and n = bks2

v
c. We shall use the notation SBSk(s; v)

to denote such a symmetric balanced square. Observe that an SBS(s; s) is
a symmetric Latin square of order s. We will use the notation SBS(s; v)
to denote an SBSk(s; v) when k = 1. Dutta and Roy [?] have completely
resolved the existence problem when k = 1. (The case k = 1 is also a special
case of Theorem ?? and Theorem ??, which we prove later.)

Clearly there is an SBSk(1; v) for every positive integer k and every inte-
ger v � k. Suppose A is an SBSk(s; v). Dividing ks2 by v, we obtain unique
nonnegative integers n and r such that

ks2 = vn+ r where 0 � r < v;

or equivalently,
ks2 = r(n+ 1) + (v � r)(n):

This implies that A has r elements of frequency n+ 1 and v� r elements of
frequency n. Let d; e; Æ and � be integers such that

ks2 = r(n+ 1) + (v � r)(n) = Æ(d) + �(e); (1)
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where e is an even integer, fd; eg = fn; n + 1g, and fÆ; �g = fr; v � rg.
Then A has Æ elements of odd frequency d and � elements of even frequency
e. An element of odd frequency d is de�ned to be an odd element, and an
element of even frequency e is de�ned to be an even element. Since A is
symmetric, every odd element is contained in an odd number of cells of the
main diagonal. Thus, the number of odd elements cannot exceed ks; that is,
Æ � ks. This observation is recorded in the following lemma.

Lemma 1 A necessary condition for the existence of an SBSk(s; v), where
k � v, is that the number of odd frequency elements in the array is at most
ks. 2

Lemma 1 and the discussion preceeding it motivates the following de�ni-
tion.

De�nition 2 We say that an SBSk(s; v) is feasible if k � v and there
exist nonnegative integers d; e; Æ; � satisfying Equation (1), such that d is odd,
fd; eg = fn; n+ 1g, fÆ; �g = fr; v� rg and Æ � ks.

The following result is an immediate application of Lemma 1.

Lemma 3 If 1 < s, 1 � k � v and SBSk(s; v) is feasible, then v � ks(s+1)
2 .

Proof Suppose SBSk(s; v) is feasible. We use De�nition 2 to show that this

necessarily implies v � ks(s+1)
2 . Let the parameters r; Æ and n be as de�ned

in De�nition 2. By the feasibility condition, we must have Æ � ks.
If Æ = r, then n is even and ks2 � vn = r � ks. Since s > 1, 0 <

ks2 � ks � vn and hence n > 0. Since n is even,

2 � n =

�
ks2

v

�
�

ks2

v
:

This gives v � ks2

2 <
ks(s+1)

2 .
If Æ = v� r, then n is odd and v(n+ 1)� ks2 = v � r = Æ � ks. Since n

is odd, n � 1 and

2v � (n+ 1)v � ks2 + ks = ks(s+ 1):

Therefore, v � ks(s+1)
2

.
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This completes the proof. 2

It is possible to prove Lemma 3 directly by counting the maximum num-
ber of distinct elements possible in a symmetric s� s square where each cell
can accommodate at most k elements. However, the proof we have provided
shows that Lemma 3 is dependent on Lemma 1. Thus Lemma 1 is an inde-
pendent necessary condition. The rest of the paper is devoted to providing
evidence that this is also suÆcient.

Lemma 4 There is an SBSk(s; v) if and only if there is an SBSv�k(s; v).

Proof Let A be an SBSk(s; v). If we replace the k-subset Ai;j in row i

and column j of A, for 1 � i; j � s, by its complement, the result is an
SBSv�k(s; v). 2

Remark 1 In light of Lemma 4, we assume throughout this paper that k ��
v
2

�
.
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