CORR 2001-43

Construction of Symmetric Balanced Squares with Blocksize More than One

Palash Sarkar and Paul J. Schellenberg

Introduction By a symmetric balanced square with blocksize k, order v and side s we mean an $s \times s$ array in which every cell contains a subset of cardinality k from a set of elements V of cardinality v satisfying the following properties:

1. every element occurs in $\left\lfloor\frac{k s}{v}\right\rfloor$ or $\left\lceil\frac{k s}{v}\right\rceil$ cells of each row or column,
2. every element occurs in $\left\lfloor\frac{k s^{2}}{v}\right\rfloor$ or $\left\lceil\frac{k s^{2}}{v}\right\rceil$ cells of the array, and
3. the array is symmetric.

Note that it is inherent in our definition that $k \leq v$. Let, $m=\left\lfloor\frac{k s}{v}\right\rfloor$ (i.e. the integer part of $\left.\frac{k s}{v}\right)$ and $n=\left\lfloor\frac{k s^{2}}{v}\right\rfloor$. We shall use the notation $S B S_{k}(s, v)$ to denote such a symmetric balanced square. Observe that an $S B S(s, s)$ is a symmetric Latin square of order s. We will use the notation $S B S(s, v)$ to denote an $S B S_{k}(s, v)$ when $k=1$. Dutta and Roy [?] have completely resolved the existence problem when $k=1$. (The case $k=1$ is also a special case of Theorem ?? and Theorem ??, which we prove later.)

Clearly there is an $S B S_{k}(1, v)$ for every positive integer k and every integer $v \geq k$. Suppose A is an $S B S_{k}(s, v)$. Dividing $k s^{2}$ by v, we obtain unique nonnegative integers n and r such that

$$
k s^{2}=v n+r \text { where } 0 \leq r<v,
$$

or equivalently,

$$
k s^{2}=r(n+1)+(v-r)(n) .
$$

This implies that A has r elements of frequency $n+1$ and $v-r$ elements of frequency n. Let d, e, δ and ϵ be integers such that

$$
\begin{equation*}
k s^{2}=r(n+1)+(v-r)(n)=\delta(d)+\epsilon(e), \tag{1}
\end{equation*}
$$

where e is an even integer, $\{d, \epsilon\}=\{n, n+1\}$, and $\{\delta, \epsilon\}=\{r, v-r\}$. Then A has δ elements of odd frequency d and ϵ elements of even frequency e. An element of odd frequency d is defined to be an odd element, and an element of even frequency e is defined to be an even element. Since A is symmetric, every odd element is contained in an odd number of cells of the main diagonal. Thus, the number of odd elements cannot exceed $k s$; that is, $\delta \leq k s$. This observation is recorded in the following lemma.

Lemma 1 A necessary condition for the existence of an $S B S_{k}(s, v)$, where $k \leq v$, is that the number of odd frequency elements in the array is at most $k s$.

Lemma 1 and the discussion preceeding it motivates the following definition.

Definition 2 We say that an $S B S_{k}(s, v)$ is feasible if $k \leq v$ and there exist nonnegative integers d, e, δ, ϵ satisfying Equation (1), such that d is odd, $\{d, \epsilon\}=\{n, n+1\},\{\delta, \epsilon\}=\{r, v-r\}$ and $\delta \leq k s$.

The following result is an immediate application of Lemma 1.
Lemma 3 If $1<s, 1 \leq k \leq v$ and $S B S_{k}(s, v)$ is feasible, then $v \leq \frac{k s(s+1)}{2}$.
Proof Suppose $S B S_{k}(s, v)$ is feasible. We use Definition 2 to show that this necessarily implies $v \leq \frac{k s(s+1)}{2}$. Let the parameters r, δ and n be as defined in Definition 2. By the feasibility condition, we must have $\delta \leq k s$.

If $\delta=r$, then n is even and $k s^{2}-v n=r \leq k s$. Since $s>1,0<$ $k s^{2}-k s \leq v n$ and hence $n>0$. Since n is even,

$$
2 \leq n=\left\lfloor\frac{k s^{2}}{v}\right\rfloor \leq \frac{k s^{2}}{v}
$$

This gives $v \leq \frac{k s^{2}}{2}<\frac{k s(s+1)}{2}$.
If $\delta=v-r$, then n is odd and $v(n+1)-k s^{2}=v-r=\delta \leq k s$. Since n is odd, $n \geq 1$ and

$$
2 v \leq(n+1) v \leq k s^{2}+k s=k s(s+1)
$$

Therefore, $v \leq \frac{k s(s+1)}{2}$.

This completes the proof.
It is possible to prove Lemma 3 directly by counting the maximum number of distinct elements possible in a symmetric $s \times s$ square where each cell can accommodate at most k elements. However, the proof we have provided shows that Lemma 3 is dependent on Lemma 1. Thus Lemma 1 is an independent necessary condition. The rest of the paper is devoted to providing evidence that this is also sufficient.

Lemma 4 There is an $S B S_{k}(s, v)$ if and only if there is an $S B S_{v-k}(s, v)$.
Proof Let A be an $S B S_{k}(s, v)$. If we replace the k-subset $A_{i, j}$ in row i and column j of A, for $1 \leq i, j \leq s$, by its complement, the result is an $S B S_{v-k}(s, v)$.

Remark 1 In light of Lemma 4, we assume throughout this paper that $k \leq$ $\left\lfloor\frac{v}{2}\right\rfloor$.

