CORR 2001-59

Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree

Markus Maurer*, Alfred Menezes & Edlyn Teske

Abstract In this paper, we analyze the Gaudry-Hess-Smart (GHS) Weil descent attack on the elliptic curve discrete logarithm problem (ECDLP) for elliptic curves defined over characteristic two finite fields of composite extension degree. For each such field \mathbb{F}_{2^N} , $N \in [100, 600]$, we identify elliptic curve parameters such that (i) there should exist a cryptographically interesting elliptic curve E over \mathbb{F}_{2^N} with these parameters; and (ii) the GHS attack is more efficient for solving the ECDLP in $E(\mathbb{F}_{2^N})$ than for solving the ECDLP on any other cryptographically interesting elliptic curve over \mathbb{F}_{2^N} . We examine the feasibility of the GHS attack on the specific elliptic curves over $\mathbb{F}_{2^{176}}$, $\mathbb{F}_{2^{208}}$, $\mathbb{F}_{2^{272}}$, $\mathbb{F}_{2^{368}}$ that are provided as examples in the ANSI X9.62 standard for the elliptic curve signature scheme ECDSA. Finally, we provide several concrete instances of the ECDLP over \mathbb{F}_{2^N} , N composite, of increasing difficulty which resist all previously known attacks but which are within reach of the GHS attack.