CORR 2002-24

Optimal 3-terminal cuts and linear programming

Kevin K.H. Cheung, William H. Cunningham, & Lawrence Tang*

Abstract Given an undirected graph G = (V, E), and three specified terminal nodes t_1, t_2, t_3 , a 3-cut is a subset of A of E such that no two terminals are in the same component of G/A. If a non-negative edge weight c_e is specified for each $e \int E$, the optimal 3-cut problem is to find a 3-cut of minimum total weight. This problem is \mathcal{NP} -hard, and in fact, is max- \mathcal{SNP} -hard. An approximation algorithm having performance guarantee $\frac{7}{6}$ has recently been given by Călinescu, Karloff, and Rabani. It is based on a certain linear programming relaxation, for which it is shown that the optimal 3-cut has weight at most $\frac{7}{6}$ times the optimal LP value. It is proved here that $\frac{7}{6}$ can be improved to $\frac{12}{11}$, and that this is best possible. As a consequence, we obtain an approximation algorithm for the optimal 3-cut problem having performance guarantee $\frac{12}{11}$. In addition, we show that $\frac{12}{11}$ is best possible for this algorithm.