Abstract We show that, for each orientable surface Σ , there is a constant c_{Σ} so that, if G_1 and G_2 are embedded simultaneously in the orientable surface Σ , with representativities r_1 and r_2 , respectively, then the minimum number $cr(G_1, G_2)$ of crossings between the two maps satisfies

$$cr(G_1, G_2) \le \frac{c_{\Sigma}}{r_1 r_2} |E(G_1)| |E(G_2)|$$
.

This refines earlier estimates by Negami. Furthermore, we provide a counterexample to a conjecture of Archdeacon and Bonnington by exhibiting, for each k, embeddings G_1 and G_2 in the double torus so that, if we force all the vertices of G_1 to be in the same face of G_2 , then the number of crossings between G_1 and G_2 is at least $k \cdot cr(G_1, G_2)$.