Abstract

Two orthonormal bases B and B' of a d-dimensional complex inner-product space are called mutually unbiased if and only if $|\langle b|b'\rangle|^2 = 1/d$ holds for all $b \in B$ and $b' \in B'$. The size of any set containing pairwise mutally unbiased bases of \mathbb{C}^d cannot exceed d+1. If d is a power of a prime, then extremal sets containing d+1 mutually unbiased bases are known to exist. We give a simplified proof of this fact based on the estimation of exponential sums. We discuss conjectures and open problems concerning the maximal number of mutually unbiased bases for arbitrary dimensions.