Abstract

For odd n=2l+1 and an integer $\rho, 1 \leq \rho \leq l$, a new family $S_{\sigma}(\rho)$ of binary sequences with period 2^m-1 is constructed. For a given ρ , $S_{\sigma}(\rho)$ has maximum correlation $1+2^{\frac{m+2p-1}{2}}$, family size $2^{m\rho}$, and maximum linear span $\frac{n(n+1)}{2}$. Similarly, a new family of $S_{\sigma}(\rho)$ of binary sequences with period 2^m-1 is also presented for even n=2l and an integer $\rho, 1 \leq \rho < l$, where maximum correlation, family size, and maximum linear span are $1+2^{\frac{n}{2}+\rho}, 2^{n\rho}, \frac{n(n+1)}{2}$, respectively. The new family $S_{\sigma}(\rho)$ (or $S_{\sigma}(\rho)$) contains Boztas and Kumar's construction [1] (or Udaya's [2]) as a subset if m-sequences are excluded from both constructions. As a good candidate with both low correlation and large family size, the family $S_{\sigma}(2)$ is discussed in detail by analyzing its distribution of correlation values.