
Abstract

Given two sets $\mathcal{A}, \mathcal{B} \subseteq \mathbb{F}_{d}^{q}$, the set of d dimensional vectors over the finite field \mathbb{F}_{q} with q elements, we show that the sum-set $$
\mathcal{A}+\mathcal{B}=\{\mathbf{a}+\mathbf{b} \mid \mathbf{a} \in \mathcal{A}, \mathbf{b} \in \mathcal{B}\}
$$ contains a k-term "geometric progression" of the form $\mathbf{v} \Lambda^{j}$, where $j=0, \ldots, k-1$, with a nonzero vector $\mathbf{v} \in \mathbb{F}_{d}^{q}$ and a nonsingular $d \times d$ matrix Λ whenever $$
\# \mathcal{A} \# \mathcal{B} \geq 20 q^{2 d-2 / k}
$$

We also consider some modifications of this problem including the question of the existence of elements of sumsets on algebraic varieties.

