ABSTRACT. Although powers of the Young-Jucys-Murphy elements $X_i = (1 i) + (2 i) + \dots + (i - 1 i)$, $i = 1, \dots, n$, in the symmetric group \mathfrak{S}_n acting on $\{1, \dots, n\}$ do not lie in the centre of the group algebra of \mathfrak{S}_n , we show that transitive powers, namely the sum of the contributions from elements that act transitively on [n], are central. We determine the coefficients, which we call star factorization numbers, that occur in the resolution of transitive powers with respect to the class basis of the centre of \mathfrak{S}_n , and show that they have a polynomiality property. These centrality and polynomiality properties have seemingly unrelated consequences. First, they answer a question raised by Pak [?] about reduced decompositions; second, they explain and extend the beautiful symmetry result discovered by Irving and Rattan [?]; and thirdly, we relate the polynomiality to an existing polynomiality result for a class of double Hurwitz numbers associated with branched covers of the sphere, which therefore suggests that there may be an ELSV-type formula (see [?]) associated with the star factorization numbers.