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Abstract. We present a fast addition algorithm in the Jacobian of
a genus 3 non-hyperelliptic curve over a field k of any characteristic.
When the curve has a rational flex and k is a finite field of characteristic
greater than 5, the computational cost for addition is 163M + 2I and
185M + 2I for doubling. We study also the rationality of intersection
points of a line with a quartic and give geometric characterizations of
C3,4 curves and Picard curves. To conclude, an appendix gives a formula
to compute flexes in all characteristics.

Introduction

In this article, we present a simple geometric algorithm for addition in the
Jacobian of non-hyperelliptic genus 3 curves, represented as smooth plane
quartics. Several articles have been written on the subject (see Section 5
for a discussion) and the present one continues this work by providing a
straightforward generalization of [8, 3, 23]. Our contribution is at three
different levels:

(1) we have devoted special care in writing the algorithm to minimize
the number of operations. Thus, our algorithm is to date the fastest
one for arithmetic in the Jacobian of a ‘general’ (see below) non-
hyperelliptic genus 3 curve over a finite field k of characteristic
greater than 5. As in previous articles, we measure the complex-
ity by counting the number of multiplications M and inversions I
that need to be performed in k. The computational cost for addi-
tion is 163M + 2I and 185M + 2I for doubling. Note that [22] has
announced 117M + 2I for addition and 129M + 2I for doubling for
C3,4 curves which makes it the fastest algorithm for this special case.

(2) we present several mathematical results on the arithmetic of plane
quartics. Indeed, the efficiency of our algorithm depends on the
existence of a rational line l∞ cutting the quartic in rational points
only. We announce in this article that if #k ≥ 127 there always exists
such a line (Theorem 1) and if #k ≥ 662+1 and char(k) "= 2 then l∞

can be chosen tangent to the quartic C (Theorem 2). We then study
the remaining cases: we show heuristically that any quartic has a line
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l∞ such that (l∞ · C) = 3P + Q with P,Q ∈ C(k) with probability
about 0.63 (P is called a flex point). We call this case the ‘general
case’. We finally show that quartics with a rational hyperflex (i.e.
P = Q with the previous notations) represent exactly the case of
C3,4 curves (Proposition 2) and we characterize among them Picard
curves as the curves with a rational Galois point (Proposition 3).

(3) To confirm our heuristic probability, we made tests which required
the computation of flexes. As far as we know, the most general
method was due to Abhyankar [1] which works for all but character-
istic 2. In this article, we present the first formula to compute the
flexes in all characteristics.

Due to recent progress in index calculus attacks (see [6]), it appears unlikely
that genus 3 non-hyperelliptic curves may be used for building discrete log-
arithm cryptosystems. However, as in [22], we point out that the results
presented in this paper still may be useful for cover attacks on discrete log-
arithms of other curves particularly in connection with Weil descent. More-
over, as illustrated in Section 4, fast addition algorithms can be useful in
some recent point counting algorithm, like the AGM or those based on mod-
ular curves.
The article is organized as follows. In the first section we present the geomet-
ric description of our algorithm. Section 2 deals with the rationality issues
of the intersection of a line and a plane quartic over a finite field. Section 3
deals with the translation of the geometry in an algebraic language, thanks
to Mumford representation. We write down the operations performed in the
tangent case and we optimize our algorithm in the flex case. Section 4 shows
examples of application of our algorithm. The conclusion summarizes and
compares complexities of already existing methods. Finally an appendix
proves our formula to compute the flexes and gathers tables which describe
in details the operations for addition and doubling in the ‘general’ case.

1. Geometric description of the algorithm

Let C be a non-singular curve of genus g over a field k. Let D∞ be an
effective k-rational divisor of degree g. A consequence of Riemann-Roch
theorem is the following representation of divisors:

Fact (Representation of divisors). Let D be a rational degree 0 divisor of
C. Then there exists a rational effective divisor D+ of degree g such that
D+ − D∞ ∼ D. Generically, the divisor D+ is unique.

We now restrict ourselves to the case where C is a genus 3 non-hyperelliptic
curve. Thanks to the canonical embedding, we may assume that C is a
smooth plane quartic. Conversely, any smooth plane quartic is a genus 3
non hyperellipic curve. We denote by x, y, z (or sometimes x1, x2, x3) coor-
dinates in P2.

We denote by (∗) the following condition: There is a rational line l∞

which crosses C in four (not necessarily distinct, but with multiplicity then)
k-points P∞

1 , P∞
2 , P∞

3 , P∞
4 .

Until the end of this section, we assume that condition (∗) is fulfilled (see
Section 2 for a discussion on this topic when k a finite field).
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We choose D∞ to be the divisor P∞
1 + P∞

2 + P∞
3 .

By abuse of language we say that a curve C ′ goes through nP if i(C,C ′;P ) =
n, where i(C,C ′;P ) denotes the intersection multiplicity of C and C ′ at P .

Proposition 1. Let D1,D2 ∈ Jac(C)(k). Then D1 + D2 is equivalent to a
divisor D = D+ − D∞, where the points in the support of D+ are given by
the following algorithm:

(1) Take a cubic E defined over k which goes (with multiplicity) through
the support of D+

1 ,D+
2 and P∞

1 , P∞
2 , P∞

4 . This cubic also crosses C
in the residual effective divisor D3.

(2) Take a conic Q defined over k which goes through the support of
D3 and P∞

1 , P∞
2 . This conic also crosses C in the residual effective

divisor D+.

R1

R2

R3

P!
1

K2

P!
2

P1 P2

P3

Q1

Q2

Q3

K3

K1

P!
4

P!
3 l!

Figure 1. Description of the algorithm

Proof. C being canonically embedded, (E · C) ∼ 3κ where κ = κC is the
canonical divisor of C. Therefore we have

D+
1 + D+

2 + P∞
1 + P∞

2 + P∞
4 + D3 ∼ 3κ.

Similarly, (Q · C) ∼ 2κ so

D3 + P∞
1 + P∞

2 + De ∼ 2κ
and (l∞ ·C) = P∞

1 +P∞
2 +P∞

3 +P∞
4 ∼ κ. Combining these three relations,

we obtain

D+
1 +D+

2 +P∞
1 +P∞

2 +P∞
4 +D3 ∼ D3+P∞

1 +P∞
2 +De+P∞

1 +P∞
2 +P∞

3 +P∞
4

so
D+

1 + D+
2 ∼ De + D∞.

Now we subtract 2D∞ on both sides:

D1 + D2 ∼ De − D∞ ∼ D

So De = D+.
The cubic E and conic Q are both defined over the field k because of the
k-rationality of P∞

i , D+
1 and D+

2 . !
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Remark. Actually, we need a milder hypothesis than (∗) : it would be enough
to have a line l∞ such that P∞

3 , P∞
4 are rational (this is always true over

a finite field k = Fq with q > 26 see [7]). However, we need (∗) in order
to simplify the equations of the different curves involved and optimize the
algorithm (see Section 3).

2. Rationality of the point on a canonical divisor

2.1. Structure of the canonical divisor. Let C be a smooth plane quar-
tic defined over an algebraically closed field k̄. There are 5 possibilities for
the intersection divisor (l · C) = P1 + P2 + P3 + P4 of a line l with C:

(1) The four points are pairwise distinct. This is the generic position.
(2) P1 = P2, then l is tangent to C at P1.
(3) P1 = P2 = P3. The point P1 is then called a flex. As a linear inter-

section also represents the canonical divisor, these points are exactly
the ones where a regular differential has a zero of order 3. They are
thus the Weierstrass points of C. The quartic C has infinitely many
flexes if and only if char(k̄) = 3 and C is isomorphic to the Fermat
quartic x4 + y4 + z4 = 0 (see [25, p.28]).

(4) P1 = P2 and P3 = P4. The line l is called a bitangent of the curve
C and the points Pi bitangence points. It is well known (see for ex-
ample [19]) that if char(k̄) "= 2 then C has exactly 28 bitangents. If
char(k̄) = 2, then C has respectively 7, 4, 2, or 1 bitangents, accord-
ing to the 2-rank of its Jacobian (resp. 3, 2, 1, 0).

(5) P1 = P2 = P3 = P4. The point P1 is called a hyperflex. Generically,
such a hyperflex does not exist (i.e. the set of quartics with at least
one hyperflex is of codimension 1 in the space of quartics). The
number of hyperflexes is less than 12 if C is not isomorphic to the
Fermat quartic over a field of characteristic 3. Moreover in this later
case, the number of hyperflexes of C is equal to 28 (all the bitangence
points are hyperflexes) (see [25, p.30]).

The efficiency of the algebraic version of the algorithm will depend on
the choice of l∞ (see Section 3). Roughly speaking, ‘the more special the
faster’. However, it is not clear for which choice of l∞, the condition (∗)
is fulfilled. We now study this condition when k is a finite field. For the
general and tangent cases, we only state results whose proofs will be given
in a forthcoming article [9].

In this section, we assume that k is a finite field Fq (with q = pn for a
certain prime p).

2.2. The general and tangent case. Using the same techniques as in [6],
we can prove the following result.

Theorem 1 ([9]). Let C be a smooth plane quartic over Fq. If q ≥ 127,
there exists a line which cuts C at rational points only, i.e. C satisfies the
condition (∗).

For the tangent case, we had to build a more elaborate strategy based on
correspondence curves.
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Theorem 2 ([9]). Let C be a smooth plane quartic over Fq and assume that
char(k) "= 2. If q ≥ 662 + 1, there exists a tangent at C which cuts C at
rational points only, i.e. C satisfies (∗) for a tangent line.

Remark. We have been so far unable to extend the proof to the characteristic
2 case. We hope to solve this problem in a near future.

2.3. The flex case. Let us assume that C has a rational flex. Then the
tangent at this point is a line satisfying (∗). Unfortunately, we do not know
how to compute the probability for a quartic to have at least a rational flex.
But we can have a guess on that number, coming from heuristic remarks on
one side, and relying on numerical evidences on the other side.

Conjectural fact. The probability that a smooth plane quartic has at least
one rational flex is asymptotically, when q tends to ∞, equal to 1−e−1+α >
0.63, with |α| ≤ 10−25.

Proof. (heuristic) Here we suppose that char(k) > 3. Let C : f = 0 be the
curve and H(f) : h = 0 its Hessian (see Appendix). The curve H(f) is of
degree 6 and the (C ·H(f)) are the 24 flexes with multiplicities. Generically,
when q >> 0 we may suppose that no two flexes have the same abscissae.
Then there is a rational flex if and only if the polynomial Res(f, h, y) has a
root in k. If we suppose that these polynomials are uniformly distributed
among the polynomials of degree 24, then one only has to compute the
probability that a polynomial of degree 24 has at least one linear factor in
Fq. Let (αi)i∈{1,...,q} be an enumeration of Fq.

Let S be the set of all monic polynomials of degree n and Si the subset
of S of polynomials having one or more factors of the form x − αi, i =
1, . . . , q. Then #S = qn and #Si = qn−1. By inclusion-exclusion principle,
the number N(n, q) of monic polynomials of degree n with one or more linear
factors is equal to

N(n, q) =
n∑

i=1

(
q

i

)
qn−i(−1)i−1 if n < q,

and

N(n, q) =
q∑

i=1

(
q

i

)
qn−i(−1)i−1 if n ≥ q.

After straightforward computations, one computes that the probability
P (n, q) that a monic polynomial of degree n has at least a linear factor in
Fq is

P (n, q) = 1 −
(

1 − 1
q

)q

− βn(q) ,

where
|βn(q)| ≤ 1

(n + 1)!
and hence lim

n<q
n,q→∞

βn(q) = 0 .

Already for n = 24 and q = 25 we have |βn(q)| = 25−25 ≤ 1.13 · 10−35. !
We made numerical experiments to support our heuristic argument as

well as to check the conjecture in characteristics 2 and 3. In these two cases,
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we have indeed H(f) ≡ 0. However, we have been able to find a good
substitute for H(f), see Section 6.
Computations realized with a bench of 106 non-singular quartics give the
right percentage. Thus the conjecture seems to hold.

p n Probabilities
2 17 632074/106 = 0.632074
3 11 632344/106 = 0.632344
1009 2 631358/106 = 0.631358
217 + 29 1 632921/106 = 0.632921

2.4. The hyperflex case. We recall that a generic non-singular quartic
has no hyperflex. If C has a rational hyperflex, then we find special curves
already treated in the literature, namely C3,4 curves. Recall that a Cab curve
is a nonsingular curve X/k for which there exists a cover ϕ : X → P1 in
which a k-rational point P is totally ramified. Such a curve admit a plane
affine model

X : α0,a ya + αb,0 xb +
∑

ia+jb<ab

αi,j xiyj = 0,

with αi,j ∈ k and αb,0,α0,a "= 0.

Proposition 2. A non-singular plane quartic C with a rational hyperflex
P is k-isomorphic to a C3,4 curve of genus 3.

Proof. By a linear rational transformation, we may suppose that P is the
point (0 : 1 : 0) and that the tangent at this point is the line at infinity, i.e.
the line with equation z = 0. Therefore the equation of C is of the form

y3 + h1y
2 + h2y = f4

where hi is a degree i polynomial and f4 is a degree 4 monic polynomial. !
Remark. We can wonder whether a plane quartic with a hyperflex generically
has a rational hyperflex. This is actually the case: indeed, according to [26]
and if char(k) > 3, the locus of plane quartics with more or equal than
two hyperflexes has codimension one in the locus of plane quartic with a
hyperflex. So plane quartics with exactly one hyperflex (thus a rational
hyperflex since it has to be Galois invariant) are generic. However, one can
find rational families of quartics with at least two hyperflexes which are not
defined over k. For instance x4+(y2−αz2)·Q(x, y, z) where Q ∈ k[x, y, z] is a
homogeneous degree 2 polynomial and α is not a square in k has (0 :

√
α : 1)

and (0 : −
√

α : 1) as conjugate hyperflexes.

One may like to characterize Picard curves among C3,4 curves. Recall
that if char(k) "= 3, a Picard curve is a genus 3 curve which admits an affine
model of the form y3 = f4(x). Clearly the four points (αi : 0 : 1) ∈ C
are flexes whose tangent goes through P = (0 : 1 : 0). Conversely, it is
easy to see that Picard curves are exactly the smooth plane quartics with
one rational hyperflex P and 4 distinct collinear flexes (Pi)i=1,...,4 whose
tangents are all concurrent at P (take P = (0 : 1 : 0) and the line defined by
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the Pi’s as the y = 0 line). Another characterization, maybe more natural,
is in terms of Galois point. Such points have been studied in [18] over
a field of characteristic 0 and are defined as follows. Let P ∈ C(k) and
φP : C → |κC − P | = P1 the degree 3 morphism induced by the linear
system |κC − P | (i.e. the lines going through P ). P is called a Galois
point if the geometric cover defined by φP is Galois. One has the following
characterization.

Proposition 3. Let char(k) "= 3. A smooth plane quartic C is a Picard
curve if and only if there exists P ∈ C(k) such that P is a Galois point.

Proof. If C is a Picard curve, it admits a projective model (y/z)3 = f4(x/z).
Let P = (0 : 1 : 0) and replace x = tz for t ∈ k. We obtain

(y

z

)3
= f4(t).

This clearly defines a Galois extension of k(P1) = k(t). Conversely, let
assume that C is a smooth plane quartic with a Galois point P ∈ C(k).
First we show that P is a hyperflex. If the cover φP is Galois then there
exists an automorphism α : C → C of order 3 such that φP : C → C/〈α〉.
As C is canonically embedded, α induces a projective automorphism of P2.
We show that α(P ) = P . Let R1 + R2 + R3 = φ−1

P (t0) for a generic t0. The
line α(R1)α(R2) goes through α(P ). The morphism α permutes the Ri so
α(R1)α(R2) = R1R2 and α(P ) = P . The point P is then ramified in the
cover φP and then is completely ramified. Thus, the tangent line to C at P
cuts the divisor 4P , i.e. P is a hyperflex.
Now if a point Q "= P is ramified then Q is completely ramified and it is
then a flex. As char(k) "= 3, Hurwitz formula shows that there must be
exactly 4 such flexes associated to P . We can assume that P = (0 : 1 : 0)
with tangent z = 0, and that two of them are the points P1 = (0 : 0 : 1) and
the point P2 = (1 : 0 : 1). As P is a hyperflex, Proposition 2 shows that C
admits a model

y3 + (a1x + a0)y2 + (b2x
2 + b1x + b0)y = x(x − 1)(x − r1)(x − r2).

We have the following facts:
• since the tangent at P1 (resp. P2) goes through P , b0 = 0 (resp.

b2 = −b1);
• since P1 (resp. P2) is a flex, the tangent at P1 (resp. P2) cuts the

curve only at P1 and P (resp. at P2 and Q). So a0 = 0 (resp.
a1 = 0).

Then we actually get a model of the form

y3 + bxy(x − 1) = x(x − 1)(x − r1)(x − r2)

and we are done if we show that b = 0.
We consider separately the case char(k) > 3 and the case char(k) = 2.
If char(k) > 3, letting x = tz we get the following equation for the cover

y3 + (bt2 − bt)y + (−t4 + t3(r1 + r2 + 1) − t2(r1r2 + r1 + r2) + tr1r2).
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It is classical that this extension is Galois if and only if its discriminant
∆ ∈ k(t) is a square (here we need that char(k) "= 2). Now,

∆ = −27t2 · (t − 1)2 · [t4 − 2(r1 + r2)t3 + (r2
1 + r2

2 + 4r1r2 +
4
27

b3)t2

−2(r1r
2
2 + r2r

2
1 +

2
27

b3)t + (r1r2)2].

Thus ∆ is a square if and only if the last factor is a square, i.e. can be
written (s2t2 + s1t + s0)2. It is easy to check that this implies b = 0.
If char(k) = 2, let P3 = (x3 : y3 : z3) ∈ C be a third flex such that its
tangent goes trough P . In particular

∂h/∂y(P3) = y2
3z3 + bx3z3(x3 − z3) = 0.

We replace y2
3 = bx3(x3 − 1) in the equation of C and we get

x3(x3 − 1)(x3 − r1)(x3 − r2) = 0.

Thus let say x3 = r1. Let x = r1z then replacing in the equation of C, we
get zy3 + br1z3y(r1 − 1) = 0. The point (r1 : 0 : 1) is then a flex if and only
if b = 0. !

3. Algebraic description

In section 1, we gave a general geometric description of our algorithm. In
this section, we will give an algebraic description in the tangent case and a
completely optimized one, for implementation, in the flex case.

3.1. Mumford representation and typical divisors. We need a simple
representation for the effective divisors D+. Let C be a smooth plane quartic
satisfying (∗). We may suppose (after a k-linear transformation) that P∞

1
is a point at infinity (i.e. such that its z-coordinate is 0), and that l∞ is
the line z = 0. Let f(x, y) = 0 be an affine equation of C. As in [8], we
work with Mumford representation. A divisor D ∈ Jac(C)(k) is represented
by a couple [u, v] of polynomials in k[x]. Recall that this representation is
unique under the following generic assumptions on D, which define a typical
divisor :

(1) The three points in the support of D+ are non-collinear. In this case
D+ is unique: in fact if P1 + P2 + P3 + (f) = Q1 + Q2 + Q3 then
f ∈ L(P1 +P2 +P3) and f has to be constant by the Riemann-Roch
theorem.

(2) There is no point at infinity in the support of D+. Let Pi = (xi :
yi : 1) (i = 1, 2, 3) be the three points in the support of D+ and
u =

∏
(x − xi). Since D+ is a rational divisor, u ∈ k[x].

(3) The (xi)i=1,2,3 are distinct. In this case, there exists a unique poly-
nomial v ∈ k[x] of degree 2 such that yi = v(xi) for i = 1, 2, 3 (it is
simply the interpolation polynomial).

Conversely, given a couple [u, v] such that
- u, v ∈ k[x],
- u =

∏
(x − xi) is monic of degree 3 and with simple roots,

- deg(v) = 2,
- u|f(x, v(x)),
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then P1 + P2 + P3 − D∞ is a rational typical divisor of C (where, for i ∈
{1, 2, 3}, we have Pi = (xi : v(xi) : 1)).

Proposition 4. Assume that k is algebraically closed, then the locus of non
typical divisor is of codimension 1 in the Jacobian of C.

Proof. Clearly if the points in the support of D+ are collinear l(κ−D+) "= 0,
i.e. D+ is a special divisor. D+ − D∞ is then contained in a translate of
the theta divisor, i.e. in a variety of codimension 1.
If the second condition is not satisfied then D+ is contained in the union
∪P∈(C·l∞)(C+C+P ). The image of this dimension 2 variety in the Jacobian
of C is thus of codimension 1.
Let us assume (after a possible change of coordinates) that the point (0 :
1 : 0) does not belong to C. Denote φ : C → P1 the projection of the
x-coordinate φ(x : y : z) = (x : z). Let

V = {(P1, P2, P3) ∈ C3,φ(P1) = φ(P2) or φ(P2) = φ(P3) or φ(P3) = φ(P1)}.
If the third condition is not satisfied, then D+ − D∞ belongs to the image
of V in the Jacobian of C. So again, it belongs to a variety of codimension
1. !

In particular, we see that addition of two typical divisors or doubling of
a typical divisor is generically a typical divisor. As we are mainly interested
in implementation over large fields where we can assume that the generic
hypothesis holds, we will restrict our description of the algorithms to the
case of a typical divisor. Note however that the non typical cases can be
handled even more efficiently than the generic case since the representation
uses polynomials [u, v] of lower degrees.

3.2. The tangent case. After a k-linear transformation, we may suppose
that l∞ : z = 0 is tangent at P∞

1 = P∞
2 = (0 : 1 : 0) and goes through

P∞
4 = (1 : 0 : 0). An equation for C is then of the form

y3 + h1y
2 + h2y = f3,

where h1, h2, f3 ∈ k[x] and deg(h1) ≤ 2,deg(h2) ≤ 3,deg(f3) ≤ 3. We then
have

Lemma 1. The cubic E from the theorem is generically of the form

y2 + s · y + t,

where s and t are polynomials in k[x], with deg(s) ≤ 2 and deg(t) ≤ 2.
The cubic Q is of the form

y − v,

where v ∈ k[x] and deg(v) = 2.

Proof. As P∞
1 ∈ E we see that an equation of E has no y3 term. One can

then write it in the form
y2d + sy + t

with d (resp. s, resp. t) polynomials in x of degree less than 1 (resp. less
than 2, resp. less than 3). Now l∞ : z = 0 is the tangent at E in P∞

1 so we
can assume d = 1. Finally P∞

4 ∈ E implies that E has no x3 term. This
gives the form of the cubic.
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As for the cubic, the conic Q must have a tangent line at P∞
1 equal to l∞.

This gives directly the desired form. !

To explicit the coefficients of E and Q, one proceeds similarly as in [8,
2.1.2]. Note that all the computations are carried over k.

Algorithm 1 Algorithm for Addition.

Input: D1 = [u1, v1] and D2 = [u2, v2]
Output: D1 + D2 = [uD1+D2 , vD1+D2 ]

1. Computation of the cubic E

Addition

compute the inverse t1 of v1 − v2 modulo u2

compute the remainder r of (u1 − u2)t1 by u2

solve the linear equations given by the following conditions
{

degx(−v1(v1 + s) + u1δ1) = 2 (2 eq.)
v1 + v2 + s ≡ rδ1 [u2] (3 eq.)

where s, δ1 ∈ k[x] with deg(s) = 2 and deg(δ1) = 1. Then

E = (y − v1)(y + v1 + s) + u1δ1

Doubling

compute ω1 = (v3
1 + v2

1h1 + v1h2 − f3)/u1

compute the inverse t1 of ω1 modulo u1

compute the remainder r of (3v2
1 + 2v1h1 + h2)t1 by u1

solve the linear equations given by the following conditions
{

degx(−v1(v1 + s) + u1δ1) = 2 (2 eq.)
2v1 + s ≡ rδ1 [u1] (3 eq.)

where s, δ1 ∈ k[x] with deg(s) = 2 and deg(δ1) = 1. Then

E = (y − v1)(y + v1 + s) + u1δ1

2. Computation of the conic Q

compute u′ := Res∗(E, C, y)/(u1u2)

compute the inverse α1 of t − s2 − h2 + sh1 modulo u′

compute the remainder v′ of α1(st − th1 − f3) by u′

3. Computation of D1 + D2

vD1+D2 := v′

uD1+D2 := ((v3 + v2h1 + vh2 − f3)/(u′))∗

D1 + D2 = [uD1+D2 , vD1+D2 ]
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For a polynomial g, we used the notation g∗ to symbolize the quotient of
g by its leading coefficient.

Remark. One may wonder about the special choice of the divisor D∞. It
was chosen such that the conic Q be of the form y− v. It thus gives directly
the second part of the Mumford representation [u, v] of the final divisor.
Other choices of the points P∞

1 , P∞
2 imply using an auxiliary conic to find

the representation.

3.3. Flex case. This case is particulary interesting for fast computations
in the Jacobian. Indeed, the expressions involved in Algorithm 1 are very
similar to those in the Picard curves [8] case, and decrease the number of
operations.

As in the tangent case, we can assume (after a linear transformation) that
l∞ : z = 0 is tangent at the flex P∞

1 = P∞
2 = P∞

4 = (0 : 1 : 0). An equation
of C is

y3 + h1y
2 + h2y = f4,

where h1, h2, f4 ∈ k[x] with deg(h2) ≤ 3,deg(f4) ≤ 4. Moreover P∞
1 is a

flex point with tangent z = 0 if and only if deg(h1) ≤ 1 (consider the x-
coordinates of the intersection (l∞ · C)).
In the same way as for the Lemma 1 we obtain

Lemma 2. The cubic E is generically of the form

y2 + s · y + t,

where s and t are polynomials in k[x], with deg(s) ≤ 1 and deg(t) ≤ 3.
The conic Q is of the form

y − v,

where v ∈ k[x] and deg(v) = 2.

Let Di = [ui, vi] in Mumford representation. As in the tangent case,
division with rest of y2 + sy + t by y − vi gives

y2 + sy + t = (y − vi)(y + vi + s) + ri

where ri ∈ k[x] and deg(ri) ≤ 4. As the support of D1 (resp. D2) is con-
tained in the support of (C ·E) we have ri(x) = ui(x)δi(x). The computation
of E reduces on finding the polynomials s and δ1 in k[x]. The advantage is
that s and δ1 have now degree 1. Computations are thus a lot easier: the
linear system in step 1 consists only of 4 equations, and consequently, the
resultant res(E,C, y) is easier to compute. In Algorithm 1 we just have to
replace f3 by f4.

Furthermore, if char(k) "= 3, we let Y = y + h1(x)/3 and we can assume
that C is of the following form:

Y 3 + h2Y = f4,

with h2 and f4 as above. If in addition char(k) "= 2, then we can assume
that f4 has no x3 term.
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3.4. Comments on implementation. We deal in this part with an op-
timized implementation in the case of the existence of a rational flex. To
make the algorithm more efficient, we use the following well known methods:

(1) In order to reduce the number of field inversions, we use Mont-
gomery’s trick to compute simultaneous inversions. For the same
reason, we compute almost inverses (using Bézout matrix), rather
than inverses.

(2) We use either Karatsuba or Toom-Cook (in case char(k) "= 2, 3, 5)
trick to multiply two polynomials, and we compute only the coeffi-
cients we need in the algorithm. For instance, as we only need to
know the quotient of the resultant of E and C by u1u2, the degree
≤ 5 part of this resultant is irrelevant. Note that using Toom-Cook
algorithm leads to divisions and multiplications by 2, 3 and 5. These
operations are not counted in the complexity since they are ”easy”.

(3) As explained in [2], one can try to use −2-adic expansion rather than
usual 2-adic expansion, in order to save time for scalar multiplica-
tion. But this is only worthwhile if the computation of −(D1 + D2)
is easier than that of D1 + D2. This only happens in Theorem 1 if
P∞

1 = P∞
2 = P∞

4 . In that case (and only in that case), this leads
to a saving of at least 10% for the computation of scalar multiples
mD, assuming a ratio of 10 : 1 for inversions and 2 : 3 for squarings,
in relation to multiplications. This saving is not yet included in our
algorithm.

We give in Tables 1 and 2 the detailed and optimized operations in the
case of existence of a rational flex and char(k) > 5. In that case, an addition
requires 148M+15SQ+2I and a doubling 165M+20SQ+2I. The interested
reader can find a program in MAGMA at the following webpage:

http://www.math.uwaterloo.ca/~royono/Quartic.html

If C has a rational hyperflex and char(k) > 5, the nullity of an extra
coefficient saves a couple of other operations. Addition then requires 131M+
14SQ + 2I and a doubling requires 148M + 19SQ + 2I. Finally, note that
the case of Picard curves has been handled in [8]. However, we point out
that thanks to the new remarks made in this paper, we can actually reduce
the cost for addition in the case of Picard curves to 116M + 14SQ + 2I and
to 133M + 19SQ + 2I for doubling.

4. Examples

Fast additions can be useful in modern counting points algorithm and the
two following examples are in this trend. The first example illustrates our
algorithm in characteristic 2 and in the tangent case. Even without opti-
mization, it is much faster than the existing (general) algorithm of MAGMA.
The second case uses the optimized version with a flex.

4.1. AGM-method. In [21], a quasi-quadratic time algorithm for comput-
ing the Frobenius polynomial χ(X) of an ordinary non-hyperelliptic genus 3
curve C over k = F2n is described. However, the first part of the algorithm
only gives χ(±X). Determining this sign can be done by checking for a
generic degree 0 k-divisor D whether χ(1) · D ∼ 0 or χ(−1) · D ∼ 0.
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Example 1. Let C over k = F2n with n = 100, be defined by

(ωx2 +(ω3 +1)y2 +ω2z2 +ω4xy+(ω3 +ω2)xz+ω6yz)2−xyz(x+y+z) = 0,

where the generator ω of k is a root of (X101 − 1)/(X − 1). In 2 minutes,
[21] gives us

χC(±X) = X6 + 377276036264709 · X5 + 3455351061169045838894227937403 · X4

+ 929793021972276691307766666464616872277691871 · X3

+ 3455351061169045838894227937403 · 2100 · X2

+ 377276036264709 · 2200 · X + 2300.

The line z = 0 is a bitangent at C at two rational points. We can now use
the algorithm of Section 3.2 to prove in 4 seconds that the correct polynomial
is χ(X). The same computation with MAGMA took 2 minutes.

4.2. 3-dimensional factors of Jnew(X0(N)). Let f be a newform of X0(N).
Following a construction due to Shimura, one may associate to this newform
a factor of J0(N) (the Jacobian of X0(N)), denoted Af . If dim Af ≤ 3, it is
easy to determine whether it is the Jacobian of a ‘modular’ curve Cf or not
(see for example [11] or [13]). In particular, if dimAf = 3, and if the curve
Cf is non-hyperelliptic, an equation of Cf seems to be often given by linear
relations in S2(f)⊗4. On the other hand, thanks to the Eichler-Shimura re-
lation, fast computation of Hecke operators Tp leads to a fast determination
of #Ãf (Fp) where Ãf = Af ⊗ Fp for primes p ! N (c.f. [10]). In order to
check that one obtains the right equation for the curve, one can check that
the group of rational points of its Jacobian has the expected order n by
computing n · D for a random rational degree 0 divisor D.

Example 2. We consider the modular curve X0(203). There is only one
simple factor of dimension 3 in Jnew(X0(203)). We find one quartic relation
between the associated cusp forms:

C : y4−(x+3z)y3+y2(x2−3xz+6z2)+y(4xz2−3z3)−x3z+3x2z2−4xz3+2z4 = 0

We let now p = 25033. We denote C̃ = C ⊗ Fp and C̃f = Cf ⊗ Fp. The
computation of the characteristic polynomial of Tp leads to #Jac(C̃f )(Fp) =
15692826275509, which is prime.
The curve C̃ has a rational flex. After a linear transformation, and by
denoting new coordinates still by x, y, z, we have

C̃ : y3z + y2(5057xz + 22616z2) + y(6567x3 + 18877x2z + 162xz2 + 14333z3)
= 8673x4 + 24517x3z + 20295x2z2 + 17815xz3 + 3799z4

Choosing a random rational divisor, and computing its order, we may check
in 0.14 seconds that, at least, #Jac(C̃f )(Fp) divides #Jac(C̃)(Fp).

5. Conclusion

We summarize here comparisons of the existing algorithms in the special
case of genus 3 curves with a rational flex point. In particular, we did not
include general algorithms for Cab curves like in [14] since they only give
asymptotic complexities.
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We assume that char(k) > 5. Such a curve has a rational model y3+h2y =
f4 with deg h2(x) ≤ 3 and deg f4(x) ≤ 4. We sort out the methods according
to the degree of h2.

Operation
hyperelliptic C3,4 ‘general’ quartic
of genus 3 Picard deg(h2) = 1 deg(h2) = 2 deg(h2) = 3

Our Add 2I+130M 2I+138M 2I+145M 2I+163M

Methods Dbl 2I+152M 2I+160M 2I+167M 2I+185M

Previous Add I+70M [12] 2I+140M [4] 2I+147M [4]
2I+117M [22],
2I+150M [4]

Work Dbl I+71M [12] 2I+164M [4] 2I+171M [4]
2I+129 M [22],
2I+174M [4]

Some comments on this table:
• As far as we know, our algorithm is the fastest one for the ‘general’

genus 3 case.
• The algorithm [22] works also in characteristic 5 and is currently the

fastest one for C3,4 curves. Their method, which is a special case of
[16] and [17], relies on a good choice of Riemann-Roch spaces and
then has a geometric/algebraic flavor.

• In [4], the authors work in the function field of the curve, which
allows them to use the tools from algorithmic number theory. In
order to identify Jacobians and Class groups, they are restricted to
work with a unique point at infinity.

• The algorithms [3] and [23] for Picard curves do not appear in this
table as their point of view is different: they deal with the more gen-
eral problem of reduction of divisors and they give only asymptotic
complexity. We point out that a generalization of their method for
Cab curves based on geometric intersections, has been designed in
[5].

6. Appendix

We show here how to compute the flexes of a plane algebraic curve
C : f(x1, x2, x3) = 0 of degree n over any algebraically closed field k of
characteristic p ≥ 0. Let P be a non-singular point of C. Recall that a
point P is a flex if the intersection multiplicity at P of the tangent at P
with C is greater than or equal to 3. This generalizes the definition given
in Section 2.1. Non classical behaviors may appear when the characteristic
divides n−1. For instance, there exist curves, called funny curves, for which
all points are flexes (see for instance [15], where it is proved that a funny
quartic is isomorphic to the Fermat quartic).

We are here interested in computational aspects of flexes. In characteristic
0, this is done by computing the Hessian.

Definition 1. Denote by fi the derivative of f with respect to xi. We call
the Hessian matrix of f the matrix (fij)i,j and we call its determinant H(f)
the Hessian of f .

The flexes are then the intersection points of the curve H(f) = 0 and C
(see below Proposition 6). However, we shall see that this does not work
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when p divides 2(n− 1). In [1], Abhyankar gives a method to overcome the
difficulty when p "= 2.

Proposition 5 ([1]). Assume that p "= 2 and that P = (a : b : 1) ∈ C. Then
P is a flex if and only if h(a, b) = 0 with

h(x1, x2) =

∣∣∣∣∣∣

f(x1, x2, 1) f1(x1, x2, 1) f2(x1, x2, 1)
f1(x1, x2, 1) f11(x1, x2, 1) f12(x1, x2, 1)
f2(x1, x2, 1) f21(x1, x2, 1) f22(x1, x2, 1)

∣∣∣∣∣∣
.

We present here a method which works in any characteristic. We will
need the following lemmas.

Lemma 3. Let g ∈ GL3(k) be a linear transformation. Then H(f ◦ g−1) =
(det g)2 · H(f) ◦ g−1.

Proof. Apply the chain rule. !

Lemma 4. x2
1H(f) =

∣∣∣∣∣∣

n(n − 1)f (n − 1)f2 (n − 1)f3

(n − 1)f2 f22 f23

(n − 1)f3 f23 f33

∣∣∣∣∣∣

Proof. Apply twice the Euler’s formula x1f1 + x2f2 + x3f3 = (deg f)f . See
for example [20]. !

If f = 0 is an equation of C of degree n ≥ 3, then there exists a linear
transformation g which sends a non-singular point P = (p1 : p2 : p3) on
(1 : 0 : 0) and its tangent to the line x3 = 0. Then in affine coordinates

(1) f ◦ g−1 = x2 + rx2
2 + sx2x3 + tx2

3 + R(x2, x3)
and R has only terms of degree greater or equal to 3. Then P is a flex if
and only if r = 0.

Proposition 6. Suppose that p does not divide 2(n − 1). Then P is a flex
if and only if H(f)(P ) = 0.

Proof. Suppose that the x1-coordinate of P is not 0 (otherwise do the same
proof with an other coordinate). We have

(x2
1H(f) ◦ g−1)(g(P )) = (det g)−2(x2

1H(f ◦ g−1))(g(P ))

by Lemma 3 and because the xixj (i, j "= 1) terms in (x2
1) ◦ g−1 are 0 at

g(P ) = (1 : 0 : 0). Then by Lemma 4 and the form of f ◦ g−1

(x2
1H(f))(P ) = −(det g)−22(n − 1)2r.

So H(f)(P ) = 0 if and only if r = 0 (i.e. P is a flex).
!

The proof shows also that this method can fail if p divides 2(n − 1).
We then suggest the following strategy. Denote K a complete local field
of characteristic 0, O its ring of integers, M its maximal ideal such that
O/M 1 k (O may be the ring of Witt vectors of k).

Proposition 7. Let C/O be a model of C given by a polynomial F ∈
O[X1,X2,X3]. We denote H the polynomial

H =
X2

1H(F ) − n(n − 1)F (F22F33 − F 2
23)

2(n − 1)2
.
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Then H is in O[X1,X2,X3]. We call h its reduction modulo M.
Let P = (1 : a : b) ∈ C be a non-singular point. The point P is a flex if and
only if h(1, a, b) = 0.

Proof. First we prove that H is in O[X1,X2,X3]. By Lemma 4,

X2
1H(F )−n(n− 1)F (F22F33 −F 2

23) = (n− 1)2(2F2F3F23 −F 2
2 F33 −F 2

3 F22).

So 2(n − 1)2 divides X2
1H(F ) − n(n − 1)F (F22F33 − F 2

23).
Since P is non-singular, there exists P = (1 : A : B) ∈ C(O) lifting P . Let
g ∈ GL3(O) a linear transformation that maps P on (1 : 0 : 0) with tangent
X3 = 0. The reduction of this point is a flex if and only if the corresponding
r (of equation (1)) is in M. Now

H(P) =
(X2

1H(F ))(P)
2(n − 1)2

= − deg(g)2 · r

by the computations of Proposition 6. So P is a flex if and only if h(1, a, b) =
0. !
Acknowledgment. The formula

(2F2F3F23 − F 2
2 F33 − F 2

3 F22)

appears already in [24, Th.0.1]. We are thankful to F. Voloch for this refer-
ence. We also want to thank J. Hirschfeld for pointing out a mistake in an
earlier version and M. Girard for discussions on hyperflexes.
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Table 1. Addition, deg u1 = deg u2 = 3

Input D1 = [u1, v1] and D2 = [u2, v2]
ui = x3 + ui2x2 + ui1x + ui0, vi = vi2x2 + vi1x + vi0

C : y3 + h(x)y − f(x) = 0 with
h(x) := h3x3 + h2x2 + h1x + h0, f(x) := x4 + f2x2 + f1x + f0

Output D = [uD1+D2 , vD1+D2 ] = D1 + D2 with
uD1+D2 = x3 + u2x2 + u1x + u0

vD1+D2 = v2x2 + v1x + v0

Step Expression Operations
1.1 compute the inverse t1 of v1 − v2 modulo u2 13M+2SQ

a1 = (v12−v22)u22−(v11−v21), a2 = (v12−v22)2, a3 = a2u20−a1(v10−v20);
a4 = a2(u22 +u21 +u20 +1)− (v12 − v22 +a1)(v12 + v11 + v10 − (v22 + v21 +
v20)) − a3;
a5 = a4(v12 − v22), a6 = a4(v11 − v21) − a3(v12 − v22);
a7 = a2

4, res1 = a7(v10 − v20) − a6a3, t10 = a1a6, t12 = (v12 − v22)a5;
t11 = (a1 + v12 − v22)(a6 + a5) − (t10 + t12), t10 = t10 + a7;

t1 = t12x2 + t11x + t10
1.2 compute the remainder r of (u1 − u2)t1 by u2 9M

b1 = (u12 + u11 + u10 − (u22 + u21 + u20))(t12 + t11 + t10);
b2 = (u12 − u11 + u10 − (u22 − u21 + u20))(t12 − t11 + t10);
b3 = (4(u12 − u22) + 2(u11 − u21) + u10 − u20)(4t12 + 2t11 + t10);
b4 = (u12 − u22)t12, b5 = (u10 − u20)t10, b6 = (b1 + b2)/2 − (b5 + b4);
b7 = ((b3 + b2 − b1 − b5)/2 − 2(4b4 + b6))/3, b8 = b1 − (b5 + b6 + b7 + b4);
b9 = b7 − b4u22, r2 = b5 − b9u20;
b10 = b4 + b7 + b6 + b8 + b5 − (b9 + b4)(u22 + u21 + u20 + 1);
r1 = (b10 − (b4 + b6 + b5 − (b7 + b8) − (b9 − b4)(u22 − u21 + u20 − 1)))/2;
r0 = b10 − (r2 + r1);

r = r0x2 + r1x + r2

1.3 compute the cubic E = y2 + sy + t 39M+3SQ+I
c1 = v2

12, c2 = r0c1, c3 = res1 · (v12 + v22) − (r1c1) + (c2u22), c4 = c3 · res1;
c5 = res1 · r0, c6 = r0c2, c7 = r2c3 − (c6u20) − c5(v10 + v20);
c8 = (r0 + r1 + r2)(c2 + c3)− c6(1+ (u22 +u21 +u20))− c5(v22 + v21 + v20 +
v12 + v11 + v10) − c7;
c9 = c4 + u12c5c1 − v12(c8 + 2c5v11), c10 = c5c9, c11 = c25;

∗1 c12 = c29, c13 = c12 + h3(−2c10 + h3c11), inv1 = (c10c13)−1, c14 = c13 · inv1; (7M+SQ+I)
c15 = c9c14, c16 = c12 · inv1 · c10;
s0 = c7c15, s1 = c8c15, c17 = c4c15;
c18 = (1+u12+u11+u10)(c1+c17)−(v12+v11+v10)(v12+v11+v10+s1+s0);
t3 = c9c15, t0 = u10c17 − v10(v10 + s0);
t2 = (c18 + (−1+ u12 −u11 + u10)(−c1 + c17)− (v12 − v11 + v10)(v12 − v11 +
v10 − s1 + s0))/2 − t0;
t1 = c18 − (t0 + t2 + t3), k1 = c11c14, c19 = t0k1, c20 = t1k1, c21 = t2k1;

E = y2 + (s1x + s0)y + t3x3 + t2x2 + t1x + t0
2.1 compute res(E,C, y) and u′ := res(E,C, y)∗/(u1u2) 37M+5SQ

d0 = c221, d1 = 3c21, d2 = 3(c20 + d0), d3 = c21(6c20 + d0) + 3c19;
d4 = s2

1, d5 = s2
0, d6 = (s1 + s0)2 − (d4 +d5), d7 = (s1 + s0)(t3 + t2 + t1 + t0);

d8 = (s0 − s1)(t2 + t0 − (t3 + t1)), d9 = (2s1 + s0)(8t3 + 4t2 + 2t1 + t0);
d10 = s1t3, d11 = s0t0, d12 = −(d11 + d10) + (d7 + d8)/2;
d13 = −2d10 +(d11 − d7 +(d9 − d8)/3)/2, d14 = d7 − (d11 + d12 + d13 + d10);
d15 = s1d4, d16 = 3d4s0, d17 = 1 − 3d10, d18 = d15 − 3d13;
d19 = f2 + d16 + (1 − 3d10)f2 − 3d12;

∗2 d20 = (t3 + t2 + t1 + t0)(h3 +h2 +h1 +h0 +d4 +d6 +d5 −2(t3 + t2 + t1 + t0)); (15M)
d21 = (−t3 +t2−t1 +t0)(2(t3−t2 +t1−t0)−h3 +h2−h1+h0 +d4−d6 +d5);
d22 = (8t3 + 4t2 + 2t1 + t0)(8(−2t3 + h3) + 4(d4 − 2t2 + h2) + 2(d6 − 2t1 +
h1) + d5 − 2t0 + h0);
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d23 = (−8t3 +4t2 − 2t1 + t0)(−8(−2t3 +h3)+4(d4 − 2t2 +h2)− 2(d6 − 2t1 +
h1) + d5 − 2t0 + h0);
d24 = (27t3 + 9t2 + 3t1 + t0)(27(−2t3 + h3) + 9(d4 − 2t2 + h2) + 3(d6 − 2t1 +
h1) + d5 − 2t0 + h0);
d25 = t0(d5 − 2t0 + h0), d26 = t3(−2t3 + h3), d32 = f2s1;
d27 = −5d26 + ((−(d20 + d21) + (3d25 + (d23 + d22)/2)/2)/2)/3;
d28 = 15d26 + (((5d25 − 7d20 + (−d24 + 7d22 − d23 − d21)/2)/2)/2)/3;
d29 = −3d26 + (((d20 − d25 + (d21 − d22 + (d24 − d23)/5)/2)/2)/2)/3;
d33 = (h3 + h2 + h1 + h0)(d26 + d29 + d27 + d28 + s1 + s0 + d32);
d34 = (−h3 + h2 − h1 + h0)(−d26 + d29 − d27 + d28 + s1 − s0 + d32);
d35 = (8h3 + 4h2 + 2h1 + h0)(8d26 + 4(d29 + s1) + 2(d27 + s0) + d28 + d32);
d36 = (−8h3 +4h2 −2h1 +h0)(−8d26 +4(d29 +s1)−2(d27 +s0)+d28 +d32);
d37 = (27h3 +9h2 + 3h1 +h0)(27d26 + 9(d29 + s1)+ 3(d27 + s0)+ d28 + d32);
d38 = h0(d28 + d32), d44 = h3d26;
d42 = −5d44 + ((−(d33 + d34) + (3d38 + (d36 + d35)/2)/2)/2)/3;
d41 = 15d44 + (((5d38 − 7d33 + (−d37 + 7d35 − d36 − d34)/2)/2)/2)/3;
d43 = −3d44 + (((d33 − d38 + (d34 − d35 + (d37 − d36)/5)/2)/2)/2)/3;
d40 = (d33 + d34)/2 − (d38 + d42 + d44);
d39 = d33 − (d38 + d40 + d41 + d42 + d43 + d44);
d45 = k3

1, d46 = d45(d19 + d41) + d3, d47 = d45(d18 + d42) + d2;
d48 = d45(d17 + d43) + d1;

∗3 d46 = d46c16, d47 = d47c16, d48 = d48c16; (3M)
d49 = u12 + u22, d50 = u21 + u11 + u12u22;
d51 = u20 + u10 + u12u21 + u11u22, u′

2 = d48 − d49;
u′
1 = d47 − d50 − d49u′

2, u′
0 = −d49u′

1 + d46 − d51 − d50(d48 − d49);
u′ = x3 + u′

2x2 + u′
1x + u′

0
2.2 compute the inverse α1 of t − s2 − h modulo u′ 16M+2SQ

g1 = t3 − h3, g0 = g1(1 + u′
2 + u′

1 + u′
0), g2 = t0 − (d5 + h0 + g1u′

0);
g3 = t3 + t2 + t1 + t0 − (h3 + h2 + h1 + h0 + d4 + d6 + d5 + g0);
g5 = (t3 + t2 + t1 + t0 − (h3 + h2 + h1 + h0 + d4 + d6 + d5 + g0)− (−t3 + t2 −
t1 + t0 + h3 − h2 + h1 − h0 − d4 + d6 − d5 − g1(−1 + u′

2 − u′
1 + u′

0)))/2;
g6 = g3 − g5 − g2, g7 = g6u′

2 − g5, g8 = g2
6 , g10 = g8u′

0 − g7g2;
g11 = g8(1 + u′

2 + u′
1 + u′

0) − (g6 + g7)(g6 + g5 + g2) − g10, g12 = g11g6;
g13 = g11g5 − g10g6, g9 = g2

11, res2 = g9g2 − g13g10, α10 = g7g13;
α12 = g6g12, α11 = (g6 + g7)(g12 + g13) − α10 − α12, α10 = α10 + g9;

α1 = α12x2 + α11x + α10

2.3 compute the remainder v of α1(st − f4) by u′ 18M+I

i1 = d10 − 1, i2 = d13 − (d10 − 1)u′
2, i3 = d11 − f0 − i2u′

0;
i4 = d10 +d13 +d12 +d14 +d11−(1+f2 +f1 +f0)−(i2 +i1)(u′

2 +u′
1 +u′

0+1);
i5 = (i4 − ((d10 − d13 + d12 − d14 + d11 − 1 − f2 + f1 − f0) − (i2 − i1)(u′

2 −
u′
1 + u′

0 − 1)))/2;
i6 = i4 − i3 − i5, i7 = (i6 + i5 + i3)(α12 +α11 +α10), i9 = i6α12, i10 = i3α10;
i8 = (i6 − i5 + i3)(α12 − α11 + α10), i11 = (i7 + i8)/2 − (i10 + i9);
i12 = (((4i6 +2i5 + i3)(4α12 +2α11 +α10)− i7 + i8 − i10)/2−2(4i9 + i11))/3;
i13 = i7 − (i10 + i11 + i12 + i9), i14 = i9, i15 = i12 − i9u′

2, i16 = i10 − i15u′
0;

i17 = (i9 + i12 + i11 + i13 + i10) − (i15 + i14)(u′
2 + u′

1 + u′
0 + 1);

i18 = (i17 − (i9 − i12 + i11 − i13 + i10) + (i15 − i14)(u′
2 − u′

1 + u′
0 − 1))/2;

i19 = i17 − i16 − i18, inv2 = (res2 · i19)−1, i20 = inv2 · i19;
v0 = i20i16, v1 = i20i18, v2 = i20i19;

v = v2x2 + v1x + v0

3 compute u := uD1+D2 16M+3SQ

j1 = inv2 · res2
2, j2 = j3

1 , j3 = j1v1, j4 = j2
3 , j5 = j1v0, j6 = j3(j4 + 6j5);

∗4 j7 = (v2 +v1 +v0)(h3 +h2 +h1), j8 = (v2−v1 +v0)(h3−h2+h1), j9 = v2h3; (8M)
j10 = v0h1, j11 = (j7 + j8)/2 − (j10 + j9), j12 = 3j3 + j2j9, j14 = j6 + j2j11;
j13 = 3(j5 + j4) − j2 + j2((((4v2 + 2v1 + v0)(4h3 + 2h2 + h1) − j7 + j8 −
j10)/2 − 2(4j9 + j11))/3);
u2 = j12 − u′

2, u1 = j13 − u′
1 − u′

2u2, u0 = −u′
2u1 + j14 − u′

0 − u′
1(j12 − u′

2);
u = x3 + u2x2 + u1x + u0

total 148M, 15SQ, 2I



FAST ADDITION ON NON-HYPERELLIPTIC GENUS 3 CURVES 19

Table 2. Doubling, deg u1 = 3

Input D1 = [u1, v1]
u1 = x3 + u12x2 + u11x + u10, v1 = v12x2 + v11x + v10

C : y3 + h(x)y − f(x) = 0 with
h(x) := h3x3 + h2x2 + h1x + h0, f(x) := x4 + f2x2 + f1x + f0

Output D = [u2D1 , v2D1 ] = 2D1 with
u2D1 = x3 + u2x2 + u1x + u0

v2D1 = v2x2 + v1x + v0

Step Expression Operations
1.1 compute w1 such that u1w1 = v3

1 + h(x)v1 − f(x) 12M+5SQ

l1 = (v12 + v11 + v10)2, l2 = (v12 − v11 + v10)2, l3 = v2
12, l4 = v2

10;
l5 = (l1 + l2)/2 − (l4 + l3);
l6 = (((4v12 + 2v11 + v10)2 − l1 + l2 − l4)/2 − 2(4l3 + l5))/3;
l7 = l1−(l4+ l5+ l6+ l3), l8 = (v12 +v11 +v10)(l3 + l6 + l5+ l7+h3+h2+h1);
l9 = (v12 − v11 + v10)(−l3 + l6 + h3 − (l5 + h2) + l7 + h1);
l10 = (4v12 + 2v11 + v10)(8l3 + 4(l6 + h3) + 2(l5 + h2) + l7 + h1);
l11 = (4v12 − 2v11 + v10)(−8l3 + 4(l6 + h3) − 2(l5 + h2) + l7 + h1);
l12 = v10(l7 + h1), l13 = v12l3, l14 = −5l13 + ((l9 − l8 + (l10 − l11)/2)/2)/3;
l15 = ((−(l8 + l9) + (3l12 + (l10 + l11)/2)/2)/2)/3;
l16 = (l8 + l9)/2 − (l12 + l15), l14 = l14 − 1, w13 = l13, w12 = l15 − w13u12;
w11 = l14 − w13u11 − w12u12, w10 = l16 − w13u10 − w12u11 − w11u12;

w1 = w13x3 + w12x2 + w11x + w10

1.2 compute the inverse t1 of w1 modulo u1 16M+2SQ
a1 = w13, a2 = w10 − a1u10;
a3 = w13 + w12 + w11 + w10 − a1(1 + u12 + u11 + u10);
a4 = (a3 − (−w13 + w12 − w11 + w10 − a1(−1 + u12 − u11 + u10)))/2;
a5 = a3 − a4 − a2, a6 = a5u12 − a4, a7 = a2

5, a8 = a7u10 − a6a2;
a9 = a7(1 + u12 + u11 + u10) − (a5 + a6)(a5 + a4 + a2) − a8, a10 = a9a5;
a11 = a9a4 − a8a5, a7 = a2

9, res1 = a7a2 − a11a8, t10 = a6a11;
t12 = a5a10, t11 = (a5 + a6)(a10 + a11) − t10 − t12, t10 = t10 + a7;

t1 = t12x2 + t11x + t10
1.3 compute the remainder r of (3v2

1 + h)t1 by u1 13M

b1 = 3l6 + h3 − 3l3u12, b2 = 3l4 + h0 − b1u10;
b3 = (3l3+3l6+h3+3l5+h2+3l7+h1+3l4+h0)−(b1+3l3)(u12+u11+u10+1);
b4 = (b3−((3l3−(3l6 +h3)+3l5 +h2−(3l7 +h1)+3l4 +h0)−(b1−3l3)(u12−
u11 + u10 − 1)))/2;
b5 = b3 − b2 − b4, b6 = (b5 + b4 + b2)(t12 + t11 + t10);
b7 = (b5 − b4 + b2)(t12 − t11 + t10), b8 = b5t12, b9 = b2t10;
b10 = (b6 + b7)/2 − (b9 + b8);
b11 = (((4b5 +2b4 + b2)(4t12 + 2t11 + t10)− b6 + b7 − b9)/2− 2(4b8 + b10))/3;
b12 = b6 − (b9 + b10 + b11 + b8), b13 = b11 − b8u12, r2 = b9 − b13u10;
b14 = (b8 + b11 + b10 + b12 + b9) − (b13 + b8)(u12 + u11 + u10 + 1);
r1 = (b14 − (b8 + b10 + b9) + (b11 + b12) + (b13 − b8)(u12 − u11 + u10 − 1))/2;
r0 = b14 − (r2 + r1);

r = r0x2 + r1x + r2

1.4 compute the cubic E = y2 + sy + t 39M+2SQ+I
c1 = l3, c2 = r0c1, c3 = 2res1·v12−(r1c1−c2u12), c4 = c3·res1, c5 = res1·r0;
c6 = r0c2, c7 = r2c3 − c6u10 − 2c5v10;
c8 = (r0+r1+r2)(c2 +c3)−c6(1+u12+u11 +u10)−2c5(v12 +v11 +v10)−c7;
c9 = c4 + u12c5c1 − v12(c8 + 2c5v11), c10 = c5c9, c11 = c25;

∗1 c12 = c29, c13 = c12 + h3(−2c10 + h3c11), inv1 = (c10c13)−1, c14 = c13 · inv1; (7M+SQ+I)
c15 = c9c14, c16 = c12 · inv1 · c10;
s0 = c7c15, s1 = c8c15, c17 = c4c15;
c18 = (1+u12+u11+u10)(c1+c17)−(v12+v11+v10)(v12+v11+v10+s1+s0);
t3 = c9c15, t0 = u10c17 − v10(v10 + s0);
t2 = (c18 + (−1+ u12 −u11 + u10)(−c1 + c17)− (v12 − v11 + v10)(v12 − v11 +
v10 − s1 + s0))/2 − t0;
t1 = c18 − (t0 + t2 + t3), k1 = c11c14, c19 = t0k1, c20 = t1k1, c21 = t2k1;

E = y2 + (s1x + s0)y + t3x3 + t2x2 + t1x + t0
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2.1 compute res(E,C, y) and u′ := res(E,C, y)∗/(u1u2) 35M+6SQ

d0 = c221, d1 = 3c21, d2 = 3(c20 + d0), d3 = c21(6c20 + d0) + 3c19;
d4 = s2

1, d5 = s2
0, d6 = (s1 + s0)2 − (d4 +d5), d7 = (s1 + s0)(t3 + t2 + t1 + t0);

d8 = (s0 − s1)(t2 + t0 − (t3 + t1)), d9 = (2s1 + s0)(8t3 + 4t2 + 2t1 + t0);
d10 = s1t3, d11 = s0t0, d12 = −(d11 + d10) + (d7 + d8)/2;
d13 = −2d10 +(d11 − d7 +(d9 − d8)/3)/2, d14 = d7 − (d11 + d12 + d13 + d10);
d15 = s1d4, d16 = 3d4s0, d17 = 1 − 3d10, d18 = d15 − 3d13;
d19 = f2 + d16 + (1 − 3d10)f2 − 3d12;

∗2 d20 = (t3 + t2 + t1 + t0)(h3 +h2 +h1 +h0 +d4 +d6 +d5 −2(t3 + t2 + t1 + t0)); (15M)
d21 = (−t3 +t2−t1 +t0)(2(t3−t2 +t1−t0)−h3 +h2−h1+h0 +d4−d6 +d5);
d22 = (8t3 + 4t2 + 2t1 + t0)(8(−2t3 + h3) + 4(d4 − 2t2 + h2) + 2(d6 − 2t1 +
h1) + d5 − 2t0 + h0);
d23 = (−8t3 +4t2 − 2t1 + t0)(−8(−2t3 +h3)+4(d4 − 2t2 +h2)− 2(d6 − 2t1 +
h1) + d5 − 2t0 + h0);
d24 = (27t3 + 9t2 + 3t1 + t0)(27(−2t3 + h3) + 9(d4 − 2t2 + h2) + 3(d6 − 2t1 +
h1) + d5 − 2t0 + h0);
d25 = t0(d5 − 2t0 + h0), d26 = t3(−2t3 + h3), d32 = f2s1;
d27 = −5d26 + ((−(d20 + d21) + (3d25 + (d23 + d22)/2)/2)/2)/3;
d28 = 15d26 + (((5d25 − 7d20 + (−d24 + 7d22 − d23 − d21)/2)/2)/2)/3;
d29 = −3d26 + (((d20 − d25 + (d21 − d22 + (d24 − d23)/5)/2)/2)/2)/3;
d33 = (h3 + h2 + h1 + h0)(d26 + d29 + d27 + d28 + s1 + s0 + d32);
d34 = (−h3 + h2 − h1 + h0)(−d26 + d29 − d27 + d28 + s1 − s0 + d32);
d35 = (8h3 + 4h2 + 2h1 + h0)(8d26 + 4(d29 + s1) + 2(d27 + s0) + d28 + d32);
d36 = (−8h3 +4h2 −2h1 +h0)(−8d26 +4(d29 +s1)−2(d27 +s0)+d28 +d32);
d37 = (27h3 +9h2 + 3h1 +h0)(27d26 + 9(d29 + s1)+ 3(d27 + s0)+ d28 + d32);
d38 = h0(d28 + d32), d44 = h3d26;
d42 = −5d44 + ((−(d33 + d34) + (3d38 + (d36 + d35)/2)/2)/2)/3;
d41 = 15d44 + (((5d38 − 7d33 + (−d37 + 7d35 − d36 − d34)/2)/2)/2)/3;
d43 = −3d44 + (((d33 − d38 + (d34 − d35 + (d37 − d36)/5)/2)/2)/2)/3;
d40 = (d33 + d34)/2 − (d38 + d42 + d44);
d39 = d33 − (d38 + d40 + d41 + d42 + d43 + d44);
d45 = k3

1, d46 = d45(d19 + d41) + d3, d47 = d45(d18 + d42) + d2;
d48 = d45(d17 + d43) + d1;

∗3 d46 = d46c16, d47 = d47c16, d48 = d48c16; (3M)
d49 = 2u12, d50 = 2u11 + u2

12, d51 = 2u10 + 2u12u11, u′
2 = d48 − d49;

u′
1 = d47 − d50 − d49u′

2, u′
0 = −d49u′

1 + d46 − d51 − d50(d48 − d49);
u′ = x3 + u′

2x2 + u′
1x + u′

0
2.2 compute the inverse α1 of t − s2 − h modulo u′ 16M+2SQ

g1 = t3 − h3, g0 = g1(1 + u′
2 + u′

1 + u′
0), g2 = t0 − (d5 + h0 + g1u′

0);
g3 = t3 + t2 + t1 + t0 − (h3 + h2 + h1 + h0 + d4 + d6 + d5 + g0);
g5 = (t3 + t2 + t1 + t0 − (h3 + h2 + h1 + h0 + d4 + d6 + d5 + g0)− (−t3 + t2 −
t1 + t0 + h3 − h2 + h1 − h0 − d4 + d6 − d5 − g1(−1 + u′

2 − u′
1 + u′

0)))/2;
g6 = g3 − g5 − g2, g7 = g6u′

2 − g5, g8 = g2
6 , g10 = g8u′

0 − g7g2;
g11 = g8(1 + u′

2 + u′
1 + u′

0) − (g6 + g7)(g6 + g5 + g2) − g10, g12 = g11g6;
g13 = g11g5 − g10g6, g9 = g2

11, res2 = g9g2 − g13g10, α10 = g7g13;
α12 = g6g12, α11 = (g6 + g7)(g12 + g13) − α10 − α12, α10 = α10 + g9;

α1 = α12x2 + α11x + α10

2.3 compute the remainder v of α1(st − f4) by u′ 18M+I

i1 = d10 − 1, i2 = d13 − (d10 − 1)u′
2, i3 = d11 − f0 − i2u′

0;
i4 = d10 +d13 +d12 +d14 +d11−(1+f2 +f1 +f0)−(i2 +i1)(u′

2 +u′
1 +u′

0+1);
i5 = (i4 − ((d10 − d13 + d12 − d14 + d11 − 1 − f2 + f1 − f0) − (i2 − i1)(u′

2 −
u′
1 + u′

0 − 1)))/2;
i6 = i4 − i3 − i5, i7 = (i6 + i5 + i3)(α12 +α11 +α10), i9 = i6α12, i10 = i3α10;
i8 = (i6 − i5 + i3)(α12 − α11 + α10), i11 = (i7 + i8)/2 − (i10 + i9);
i12 = (((4i6 +2i5 + i3)(4α12 +2α11 +α10)− i7 + i8 − i10)/2−2(4i9 + i11))/3;
i13 = i7 − (i10 + i11 + i12 + i9), i14 = i9, i15 = i12 − i9u′

2, i16 = i10 − i15u′
0;

i17 = (i9 + i12 + i11 + i13 + i10) − (i15 + i14)(u′
2 + u′

1 + u′
0 + 1);

i18 = (i17 − (i9 − i12 + i11 − i13 + i10) + (i15 − i14)(u′
2 − u′

1 + u′
0 − 1))/2;

i19 = i17 − i16 − i18, inv2 = (res2 · i19)−1, i20 = inv2 · i19;
v0 = i20i16, v1 = i20i18, v2 = i20i19;

v = v2x2 + v1x + v0
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3 compute u := u2D1 16M+3SQ

j1 = inv2 · res2
2, j2 = j3

1 , j3 = j1v1, j4 = j2
3 , j5 = j1v0, j6 = j3(j4 + 6j5);

∗4 j7 = (v2 +v1 +v0)(h3 +h2 +h1), j8 = (v2−v1 +v0)(h3−h2+h1), j9 = v2h3; (8M)
j10 = v0h1, j11 = (j7 + j8)/2 − (j10 + j9), j12 = 3j3 + j2j9, j14 = j6 + j2j11;
j13 = 3(j5 + j4) − j2 + j2((((4v2 + 2v1 + v0)(4h3 + 2h2 + h1) − j7 + j8 −
j10)/2 − 2(4j9 + j11))/3);
u2 = j12 − u′

2, u1 = j13 − u′
1 − u′

2u2, u0 = −u′
2u1 + j14 − u′

0 − u′
1(j12 − u′

2);
u = x3 + u2x2 + u1x + u0

total 165M, 20SQ, 2I

Table 3. If h3 = 0 then replace ∗1, ∗2, ∗3 and ∗4 by

∗1 inv1 = c−1
10 , c14 = inv1, c15 = inv1 · c9, c16 = 1; (M+I)

∗2 d27 = (t3 + t2 + t1)(h1 + h2 + d4 + d6 − 2(t3 + t2 + t1)); (9M+SQ)
d28 = (t3 − t2 + t1)(h1 − h2 + d6 − d4 − 2(t3 − t2 + t1));
d29 = (4t3 + 2t2 + t1)(−8t3 + 2(d4 − 2t2 + h2) + d6 − 2t1 + h1);
d30 = −2t23, d31 = t1(d6 − 2t1 + h1), d32 = (d27 + d28)/2 − (d31 + d30);
d33 = ((d29 − d27 + d28 − d31)/2 − 2(4d30 + d32))/3;
d35 = (h2 + h1 + h0)(d30 + d33 + d32 + s0 + s1);
d36 = (h2 − h1 + h0)(d30 − d33 + d32 + s0 − s1);
d37 = (4h2 + 2h1 + h0)(4d30 + 2(d33 + s1) + d32 + s0);
d43 = h2d30, d39 = h0(d32 + s0), d41 = (d35 + d36)/2 − (d39 + d43);
d42 = ((d37 − d35 + d36 − d39)/2 − 2(4d43 + d41))/3;
d40 = d35 − (d39 + d41 + d42 + d43), d44 = 0;

∗3

∗4 j11 = v2h2, j12 = 3j3, j13 = 3(j5 + j4) − j2 + j2j11; (5M)
j14 = j6 + j2((v2 + v1)(h2 + h1) − (v1h1 + j11));

Table 4. If h3, h2 = 0 then replace ∗1, ∗2, ∗3 and ∗4 by

∗1 inv1 = c−1
10 , c14 = inv1, c15 = inv1 · c9, c16 = 1; (M+I)

∗2 d37 = −2t23, d35 = t2(d4 − 2t2), d38 = 0, d39 = 0, d43 = 0, d44 = 0; (5M+SQ)
d36 = (t3 + t2)(d4 −2(t3 + t2))− (d35 +d37), d42 = h1d37, d40 = h0(d36 + s1);
d41 = (h1 + h0)(d37 + d36 + s1) − (d40 + d42);

∗3

∗4 j12 = 3j3, j13 = 3(j5 + j4) − j2, j14 = j6 + j2(h1v2); (2M)

Table 5. If h3, h2, h1 = 0 then replace ∗1, ∗2, ∗3 and ∗4 by

∗1 inv1 = c−1
10 , c14 = inv1, c15 = inv1 · c9, c16 = 1; (M+I)

∗2 d41 = −2h0t23, d38 = 0, d39 = 0, d40 = 0, d42 = 0, d43 = 0, d44 = 0; (M+SQ)
∗3

∗4 j12 = 3j3, j13 = 3(j5 + j4) − j2, j14 = j6;

Table 6. If h3, h2, h1, h0 = 0 then replace ∗1, ∗2, ∗3 and ∗4 by

∗1 inv1 = c−1
10 , c14 = inv1, c15 = inv1 · c9, c16 = 1; (M+I)

∗2 d38 = 0, d39 = 0, d40 = 0, d41 = 0, d42 = 0, d43 = 0, d44 = 0;
∗3

∗4 j12 = 3j3, j13 = 3(j5 + j4) − j2, j14 = j6;
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bian varieties of Picard curves: explicit addition law and algebraic structure. Math.
Nachr., 208:149–166, 1999.
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