2018 Graph Theory Comprehensive

A complete paper consists of solutions to all six of the problems.

- 1. Prove König's Theorem: the size of a largest matching in a bipartite graph G is equal to the size of a smallest vertex cover of the edges.
- 2. **Prove Brooks' Theorem:** if G is a connected graph with maximum degree Δ , then either G has a proper colouring of its vertices with Δ colours, or G is either a complete graph or a cycle.
- 3. **Prove Turán's Theorem:** if G is a simple graph G with n vertices and r is a positive integer such that no subgraph of G is isomorphic to K_{r+1} , then $|E(G)| \leq |E(T_{n,r})|$ and equality holds if and only if $G = T_{n,r}$. (Here $T_{n,r}$ is the complete multipartite graph with n vertices, r parts, and each part has size either $\lfloor n/r \rfloor$ or $\lceil n/r \rceil$.)
- 4. Let G be a (multi)graph of maximum degree Δ . Let $e = v_0 v_1$ be an edge of G. Let $k \geq \Delta + 1$ and suppose that G is not k-edge-colourable but that G e is k-edge-colourable. Let ϕ be a k-edge-colouring of G e. For all $u \in V(G)$, let $\phi(u)$ denote the subset of [k] that does not appear (in ϕ) on any edge incident with u.

Suppose that $P = v_0 v_1 \dots v_m$ is a path such that for all $i \ge 1$, there exists j < i such that the colour $\phi(v_i v_{i+1})$ does not appear at v_j (i.e. is in $\phi(v_j)$).

Prove: For every $i \neq j$, the set of colours not appearing at v_i is disjoint from the set of colours not appearing at v_j . That is, prove that, for every $i \neq j$, $\phi(v_i) \cap \phi(v_j) = \emptyset$.

Hint: Use double induction, first on m, then on m - j where v_j is missing a colour that is also missing at v_m (i.e. $\phi(v_m) \cap \phi(v_j) \neq \emptyset$). Use Kempe changes! It may be useful in some cases to also consider a second colour, in particular one missing at v_{i+1} .

5. Let *H* be a subgraph of a graph *G*. A walk *W* in *G* is *H*-avoiding if no edge of *W* and no internal vertex of *W* is in *H*. Define the relation \sim on $E(G) \setminus E(H)$ by $e \sim e'$ if there is an *H*-avoiding walk in *G* containing both *e* and *e'*.

Prove that \sim is a transitive relation.

6. Let \mathcal{F} be a collection of subtrees of a tree T, and let k be a positive integer.

Prove at least one of the following holds:

- (a) there are k vertex disjoint trees in \mathcal{F} , or
- (b) there is a set X of < k vertices in T that intersects each tree in \mathcal{F} .

Hint: Consider the set of all edges e in T such that both components of T - e contain a tree in \mathcal{F} ; prove that this set forms a subtree of T; then consider a leaf of this subtree.