## First-Stage PhD Comprehensive Examination

## in CONTINUOUS OPTIMIZATION

Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo

MC 5479, Thursday, June 13, 2019, 1pm - 4pm (3 hours)

Examiners: Levent Tunçel and Stephen A. Vavasis

1. Consider the univariate function

$$
f(x):= \begin{cases}e^{x} & \text { for } x<0 \\ x+1 & \text { for } x \geq 0\end{cases}
$$

(a) Show that this function is convex. Any standard theorem that characterizes convexity of functions may be used.
(b) Show that the gradient of this function is Lipschitz continuous, and find $L$, the Lipschitz constant of the gradient.
(c) Since $f^{\prime}$ is Lipschitz continuous, Zoutendijk's theorem for minimizing $f$ using steepest descent is applicable. State Zoutendijk's theorem and the conclusion as it applies to this function $f$.
(d) Suppose that $x_{k}=0$ on the $k$ th iteration of the steepest descent method. Identify an interval of positive width of choices for $x_{k+1}$ that satisfy the Wolfe conditions. (Select any reasonable values for the constants appearing in Wolfe's conditions, and state what values you used.)
2. Let $n$ be a positive integer.
(a) Assume $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is positively 1-homogeneous. Show that it is subadditive if and only if it is convex.
(b) Recall, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies
(i) $f(x)>0, \forall x \in \mathbb{R}^{n} \backslash\{0\}$,
(ii) $f(u+v) \leq f(u)+f(v), \forall u, v \in \mathbb{R}^{n}$,
(iii) $f(\lambda x)=|\lambda| f(x), \forall x \in \mathbb{R}^{n}, \forall \lambda \in \mathbb{R}$,
then $f$ is a norm on $\mathbb{R}^{n}$. Let

$$
\mathcal{F}:=\left\{f: f \text { is a norm on } \mathbb{R}^{n}\right\}
$$

and

$$
\mathcal{C}:=\left\{C \subset \mathbb{R}^{n}: C \text { is compact, convex, } 0 \in \operatorname{int}(C) \text { and } C=-C\right\} .
$$

Prove that (with $\gamma$ being the gauge function)

$$
f(\cdot):=\gamma(C ; \cdot) \text { and } C:=\left\{x \in \mathbb{R}^{n}: f(x) \leq 1\right\}
$$

define a one-to-one correspondence between $\mathcal{F}$ and $\mathcal{C}$.
3. Let $n$ be a positive integer and $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ be convex.
(a) Define the notion of subgradient of $f$ at $\bar{x} \in \mathbb{R}^{n}$.
(b) Define the notion of subdifferential of $f$ at $\bar{x} \in \mathbb{R}^{n}$.
(c) Let $f(x):=\|x\|_{\infty}$. What is the subdifferential of $f$ at a given $\bar{x} \in \mathbb{R}^{n}$ ? Prove your claims.

For the remaining parts of this question, let $m$ and $n$ be positive integers such that $n \geq m+1$, and consider linear programming problems in the form

$$
\begin{align*}
p^{*}:=\min & c^{\top} x \\
\text { s.t. } & A x=0 \\
& e^{\top} x=n  \tag{P}\\
& x \in \mathbb{R}_{+}^{n},
\end{align*}
$$

where $A$ is a given full row rank $m$-by-n matrix, $c \in \mathbb{R}^{n}$ is also given. $e \in \mathbb{R}^{n}$ is the vector of all ones. Assume that $A e=0, p^{*}=0$ and $c^{\top} e>0$. In your answers, you may use the Fundamental Theorem of LP, provided you state it clearly and correctly. For every $q \in \mathbb{R}_{++}$, define

$$
\phi_{q}(x):= \begin{cases}(q+1) \ln \left(c^{\top} x\right)-\ln \left(\min _{j}\left\{x_{j}\right\}\right), & \text { if } x \in \mathbb{R}_{++}^{n} \\ +\infty, & \text { otherwise }\end{cases}
$$

and consider the optimization problem

$$
\begin{array}{rll} 
& v\left(P_{q}\right):=\inf & \phi_{q}(x) \\
\left(P_{q}\right) & \text { s.t. } & A x=0 \\
& e^{\top} x=n
\end{array}
$$

(d) Prove that for every $q \in \mathbb{R}_{++}, v\left(P_{q}\right)=-\infty$ (i.e., $\left(P_{q}\right)$ is unbounded). Further prove that for every $q \in \mathbb{R}_{++},(\mathrm{P})$ and $\left(P_{q}\right)$ are equivalent (by stating a suitable definition of equivalence and proving it).
Hint:

- (P) has optimal solution(s),
- $\left(P_{q}\right)$ has feasible sequences in the domain of $\phi_{q}$ which certify unboundedness of $\left(P_{q}\right)$.
(e) Let $f: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ be defined by $f(x):=-\ln \left(\min _{j}\left\{x_{j}\right\}\right)$. What is the subdifferential of $f$ at a given $\bar{x} \in \mathbb{R}_{++}^{n}$ ? Prove your claims.

4. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ be given, and consider the following optimization problem in which $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are the unknowns (i.e., $n d$ total variables), $\lambda>0$ is a fixed parameter, and all norms are Euclidean:

$$
\min _{x_{1}, \ldots, x_{n}} f(x):=\frac{1}{2} \sum_{i=1}^{n}\left\|x_{i}-a_{i}\right\|^{2}+\lambda \sum_{1 \leq i<j \leq n}\left\|x_{i}-x_{j}\right\| .
$$

(Note: This formulation arises in "sum-of-norms" clustering.)
(a) What is the definition of "strongly convex"? Suppose $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are two convex functions such that $g$ is strongly convex. Prove that $g+h$ is also strongly convex.
(b) Apply the result in (a) to the function at hand to conclude that $f$ is strongly convex. Justify your answer.
(c) By introducing auxiliary variables, rewrite the problem of minimizing $f$ as a constrained optimization in standard conic form $\min c^{T} x$ subject to $A x=b, x \in K$ (not necessarily the same $x$ ), where the convex cone $K$ is a Cartesian product of secondorder cones. The following standard trick may help: the convex quadratic constraint $s \geq\|x\|^{2} / 2$ may be expressed in second-order cone form:

$$
\frac{1}{2}(s+1) \geq\left\|\left[x ; \frac{1}{\sqrt{2}}(s-1)\right]\right\|
$$

where the notation on the right-hand side indicates concatenation of a vector and scalar.

