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Abstract

We present an essay composed of two parts. The first chapter surveys the math-

ematical models used to describe the web graph. We focus our discussion on a

preferential attachment model presented by Barabasi and Albert. We discuss the

Bollobas and Riordan LCD model which describes the same preferential attach-

ment model but in strict mathematical terms. We also discuss a model presented

by Aldous. An off-line model proposed by Pralat and Luczak is presented last.

The second chapter investigates the integrality ratio of the 2 edge connected sub-

graph problem in multigraphs. We present a simpler proof of a recent theorem

of Carr and Ravi. We also discuss the lower bounds on the ratio that were found

through computational work on small graphs. Note that the two chapters are

unrelated, but are both of interest to me.



Acknowledgements

I would like to acknowledge my supervisor Joseph Cheriyan for all of his valuable

advice. I would also like to thank Pawel Pralat for our discussion about his

model. Finally, I thank the official readers of my essay: Joseph Cheriyan and

Ashwin Nayak, as well as the unofficial readers of my essay: Antony Bonato and

Graeme Kemkes.

I would like to acknowledge the help of Mike Stilp in providing some ideas for

the proof of the Carr-Ravi theorem. I wouls like to acknowledge Jordan Sehn as

the initial author of the computer program that I modified to obtain the results

of the integrality ratio.

1



Contents

1 Introduction 4

2 Web Graphs 9

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Preferential Attachment Model . . . . . . . . . . . . . . . . . . . 15

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.4 Analytical and Simulation Results . . . . . . . . . . . . . . 19

2.4.5 Pros/Cons . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 LCD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3 Analytical Results . . . . . . . . . . . . . . . . . . . . . . 33

2.5.4 Pros and Cons . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Aldous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Analytical Results . . . . . . . . . . . . . . . . . . . . . . 41

2.6.4 Pros and Cons . . . . . . . . . . . . . . . . . . . . . . . . 45

2



2.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Protean Graph model . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.3 Analytical Results . . . . . . . . . . . . . . . . . . . . . . 50

2.7.4 Pros and Cons . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Integrality ratio of the 2EC problem on multigraphs 54

3.1 Carr-Ravi Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3



Chapter 1

Introduction

The web graph is constructed by considering each web page as a node and each

hyperlink as an edge between two nodes. It is not know how large the web graph

is, but at the time of the writing it contains over 8 billion nodes [20]. Studying

and understanding the behavior of the web graphs allows us to simulate it and

study important properties of the graph that lead to different applications, such

as optimization of search engines for better extraction of information.

It is important to note that the web graph is different from the Internet

graph. By definition, the Internet is composed of the physical resources such

as cables and routers that allow network communication to take place between

computers. Each node and edge in the Internet graph is constructed by looking

at the relationship of routers. The Internet graph is bounded by geographical

constraints and in general may have different properties from the web graph. The

web graph studies the collection of web pages on the World Wide Web (WWW)

and has no such geographical restrictions. The web graph is mostly known to

be a 2-level structure: internal structure of the web pages on the same host, and

the structure of different hosts connecting to each other. Each web page belongs

to a host and about 75% of the hyperlinks connect the pages on the same host

[8]. So, the graph of web pages from the same host has a lot of structure. For

example, all the pages might have a link to the main page. The host graph is

constructed by considering all the web pages on the same host as a single vertex.

In this essay, we only study the mathematical models that try to describe the
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web graph, thus the entire collection of web pages.

Any mathematical model should try to have the following characteristics:

• mathematical tractability : one can find explicit formulas for various quan-

tities of interest

• fitting flexibility : by modifying the parameters the model is able to describe

the statistics observed through simulation studies on real data

• naturalness: the properties emerge from some simple underlying mathe-

matical structure.

In this essay, we first discuss the studies done on the graph collected by

crawling through a large collection of web pages. These empirical studies reveal

interesting characteristics of the web graph. Ideally, mathematical models should

be able to explain the observed properties of the graph.

We study the following three important characteristics of the web graphs

which have been observed through experimental data.

• the degree distribution of nodes

• the diameter of the graph

• the clustering coefficient

The reviewed models all have different approaches to modeling the web graph.

Some are done through experimental data, others through different mathematical

approaches. We compare and contrast these models by pointing out their pros

and cons.

In our second chapter of the essay, we discuss the problem of finding the

integrality ratio for the 2 edge connected subgraph problem. There is no relation

between the two topics discussed in this essay. The topic of web graph has always

personally fascinated me. The topic of the 2 edge connected subgraph problem

allowed me to research a very fundamental problem in combinatorial science.
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Given a connected undirected complete graph G = (V, E) and non-negative

edge costs c : E → R+, the 2EC subgraph problem is to find a multiset F of

edges of minimum cost such that the subgraph H = (V, F ) is 2-edge connected.

Note that we allow F to contain multiple copies of an edge of G. An integer

programming formulation for the 2EC problem follows:

min
∑

e∈E cexe

s.t. x(δ(S)) ≥ 2 ∀ ∅ � S � V

x(δ(v)) ≥ 2 ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

xe integral ∀ e ∈ E

(2EC-IP)

The LP relaxation (2EC-LP) is obtained by dropping the integrality con-

straints on x.

Denote the optimum objective value of (2EC-IP) by ZIP , and the optimum

objective value of (2EC-LP) by ZLP . In general, for an integer program (IP) or

a linear program (LP), we use ZIP and ZLP to denote the optimal values of the

objective functions of the programs.

It is the goal of this essay to examine the value of the 2EC integrality ratio

α = ZIP/ZLP .

It is well known that the 2EC integrality ratio is ≤ 2. This result is due to

Edmond’s theorem on disjoint branching [17].

Carr and Ravi have claimed that 2EC integrality ratio is ≥ 6/5, by construct-

ing worst-case examples. They have proved that for 1/2-integral solution in the

2EC-LP, the value of α is 4/3. We present in this paper a simpler proof of this

result.

We also perform computational work to find the lower bound for α on small

graphs with a fixed number of vertices.

We briefly discuss another version of the 2EC problem where multi-edges are

not allowed. In other words, the values of xe are bounded by 1. Then a graph on

even 4 vertices (n = 4) has an integrality ratio of 4/3 as seen in figure 1.1.

The value of ZLP is 3/4. For ZIP any feasible integral solution has xe = 1
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for at least 2 solid edges, thus resulting in ZIP = 1. The value of 2EC integrality

ratio is α = ZIP/ZLP = 1/(3/4) = 4/3.

c=0 for dashed edges
c=1/2 for solid edges
c values

x=1/2 for dashed edges
x=1 for solid edges
x values

Figure 1.1: Graph on 4 vertices with x ≤ 1 showing integrality gap of 4/3.

Now we discuss the relationship of the 2EC subgraph problem to the traveling

salesman problem (TSP). Given the complete graph Kn = (V, E) on n nodes with

non-negative edge costs c ∈ RE, the Traveling Salesman Problem (TSP) is to find

a Hamiltonian cycle in Kn of minimum cost. When the costs satisfy the triangle

inequality constraints, we call the problem the metric TSP. In this paper, we only

focus our discussion on the metric TSP. The integer program for the TSP is given

below.

min
∑

e∈E cexe

s.t. x(δ(S)) ≥ 2 ∀ ∅ �= S � V

x(δ(v)) = 2 ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

xe integral ∀ e ∈ E

(TSP-IP)

The LP relaxation (TSP-LP) is obtained by dropping the integrality con-

straints on x. The new constraint x(δ(v)) = 2, ∀ v ∈ V is called the degree 2

constraint.
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In section 3.1 we show that the above LP is in fact equivalent to our 2EC-LP.

Part of our motivation for studying the 2EC integrality ratio comes from the

following famous conjecture on TSP:

Conjecture 1.0.1 Consider the TSP with metric costs. Then the integrality

ratio of ZTSP−IP/ZTSP−LP is ≤ 4/3.

Moreover, the 2EC integrality ratio is less than or equal to the metric TSP

integrality ratio. This holds because every integral solution of TSP-IP is also

an integral solution of 2EC-IP, and the two LPs (2EC-LP and TSP-LP) are

equivalent. Thus, if the above conjecture is true, then the 2EC integrality ratio

is ≤ 4/3. Note that the converse may not be true.
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Chapter 2

Web Graphs

2.1 Definitions

All standard graph theory definitions are assumed as common knowledge and

standard notation is used from any graph theory book. In this essay, we use the

notation found in the book ”Introduction to Graph Theory” by Douglas B. West

[31].

We define the three characteristic properties for which we wish to compare

each mathematical model.

We first define what is meant by the degree of a vertex in a graph.

Definition 2.1.1 (Degree) The degree of a vertex in a graph is the number of

edges incident to that vertex. The in-degree (out-degree) of a vertex is the number

of edges pointing in to (out of) a vertex. We denote the values by d(v), din(v)

and dout(v).

Let P(k) be the probability that a randomly selected vertex has degree k. Then,

P(k) follows a power law degree distribution if P (k) ∼ ck−γ, where c is some

positive constant, and γ > 1 is the power law coefficient.

We now define two aspects of the graph that are closely related: the diameter

and the average path length.

Definition 2.1.2 (Diameter) The diameter of a graph G, labeled as Diam(G)

is the maximum over all ordered pairs of vertices u and v of the shortest existing
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uv-paths. In other words, Diam(G) = maxu,v {length of shortest uv-path | there

exists a uv-path}. For an unconnected graph, the diameter is infinite.

Definition 2.1.3 (Average Path Length) Let P be the set of all ordered (u, v)

pairs such that there exists a uv-path, then the average path length, labeled as

< d >, is the expected length of the shortest path, where the expectation is over

uniform choices from P .

There are two distinct definitions of clustering coefficient that should be men-

tioned.

The first definition calculates the local value of the ratio of triangles to paths

of length two per each vertex v, and then takes a mean value over the whole

graph.

Definition 2.1.4 (C1) Given a graph G we define the clustering coefficient as:

Let Cv(G) =
number of triangles incident on vertex v

number of paths of length 2 centered on vertex v
(2.1)

Equivalently we can also define Cv(G) as follows:

Cv(G) =
number of edges between neighbours of v(

dG(v)
2

) (2.2)

Then the clustering coefficient can be defined as:

C1(G) =
1

n
∗

n∑
v=1

Cv(G) (2.3)

The second definition calculates the global value of the ratio of all triangles

in the graph versus the number of all pairs of adjacent vertices.

Definition 2.1.5 (C2) Given a graph G we define the clustering coefficient as:

C2(G) =
3 * number of triangles

number of pairs of adjacent edges
(2.4)

Which can equivalently be thought of as:

C2(G) =
# of pairs of ab, ac of adjacent edges for which bc is an edge

# of pairs of ab, ac of adjacent edges
(2.5)
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This can be written mathematically as:

C2(G) =

(
n∑

v=1

(
dG(v)

2

)
Cv(G)

)
/

n∑
v=1

(
dG(v)

2

)
(2.6)

Note that these two definitions are not equivalent. In particular, note the

extreme example proposed by Bollobas [9]. Take G to be a double star, where

vertices 1 and 2 are joined to each other and to all other vertices. None of the

other vertices are connected between themselves. Then Cv(G) = 1 when v ≥ 3,

since for such v we have dG(v) = 2, thus the denominator of equation 2.2 is(
2
2

)
= 1. There is only 1 edge between the neighbours of v, so the numerator of

equation 2.2 is 1, indicating that Cv≥3(G) = 1. Also Cv(G) = 2/(n − 1) when

v = 1 or v = 2. To see this, we note that the degree of such v is n − 1 so the

denominator
(

n−1
2

)
= (n − 1)(n − 2)/2. There are n − 2 edges between all the

neighbours of v, thus the numerator of equation 2.2 is n− 2. It then follows that

C1(G) = 4
n(n−1)

+ n−2
n

= 1 − o(1). However, C2(G) ∼ 2/n.

2.2 Empirical Results

In order to try to understand what the structure of the web graph looks like,

researchers have created computer programs to crawl the world wide web and

construct an adjacency matrix of all the collected web pages.

Barabasi, Albert and Jeong were one of the first people who did a crawl of

the web to try to discover some important properties of the web graph [6], [2].

Their study focused on collecting the web pages from the nd.edu domain. The

size of their web graph was of about 325,000 pages and almost 1.5 million edges.

Here, we discuss in more detail the biggest publicly available study done on

the web graph [13]. The study was done on an Altavista database. Altavista was

one of the biggest search engines in 1999, and thus had in its index a collection

of over 200 million pages and 1.5 billion hyperlinks. It is very important to note,

that currently Google is the leading search engine and has over 8 billion pages

in its index [20]. However, research on Google’s index is proprietary information

and is not published. We should also point out that crawls on the web are slightly

biased to discover web pages that have a large in-degree. Web pages that no one

11



points to or with low in-degree to will almost never be discovered. However, the

general observations about the global properties of the web graph will not be

affected by this bias.

One of the key characteristics that was revealed by the above studies is that

the degree distribution follows the power law with γ as the power law exponent.

Barabasi and Albert noticed that γ = 2.1 for the in-degree and γ = 2.4 for

the out-degree. The study on the Altavista data indicated that γ = 2.1 for the

in-degree and γ = 2.7 for the out-degree. It is worthwhile to point out that while

the in-degree follows the power-law distribution very clearly, the vertices with low

out-degree seem to follow a non power-law distribution.

The power-law degree distribution was a surprising result that can not be

explained by classical network models such as the random graph model due to

Erdos-Renyi [18, 19]. New mathematical models are needed to try to explain this

important characteristic of the web graph.

In general, the web graph from the Altavista study looks almost like an or-

ganism, with the structure seen in figure 2.1.

The strongly connected component (SCC) contains about a quarter of all the

web pages. The SCC is a set of nodes such that for any pair of nodes u and v in

the set, there exists a uv-path. The IN and the OUT components each contain

about a quarter of all the web pages. Nodes in the IN component have links

that lead into the SCC component, but following the forward links from the SCC

will not lead us into the IN component. The OUT component consists of pages

that can be reached by following the links from the SCC, but there is no path

from the OUT pages into the SCC. A real world example of nodes in the IN

component is a set of newly created pages that no one has discovered but which

link to other popular pages. Corporate webpages would be found in the OUT

component because they only have internal links. The other quarter of the nodes

are in the tendrils. Tendrils are a collection of pages that are not in the SCC, but

can be reached from the IN component, or symmetrically, from which we can get

to the OUT component.

An important characteristic that is revealed by the Altavista crawl is that

the diameter of the strongly connected component (SCC) is logarithmic in the

number of pages. The size of the SCC component is about 56 million nodes. The
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Figure 2.1: Structure of the web graph. This figure is reproduced from the

Altavista study [13].

directed diameter of SCC is at least 28. However, the path from a node in the IN

component to a node in the OUT component is much longer, and has a length of

at least 905.

If random start and end nodes are selected, then - surprisingly - 75% of the

paths do not exist in the Altavista graph. For the other 25% of the paths, the

average path length is 16 for the directed version of the web graph and only

7 for the undirected version of the web graph. It is not clear if the study by

Barabasi and Albert consider the nd.edu graph as directed or not, but they find

the average path length of 11.2 on 350,000 nodes.

The small, logarithmic diameter and average path length, is another important

property of the web graphs that the surveyed mathematical models aim to achieve.
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The Altavista study also reveals that while 90% of the nodes belong to a large

connected component, there is still a significant 10% of nodes that belong to small

groups of unconnected components.

Unfortunately, the authors of the study done on the Altavista database do

not calculate the clustering coefficient of the web-graph. However, the existence

of clusters (communities) in the web have been noticed by other researchers. In

their study, Barabasi and Albert find that C1(G) = 0.29 and C2(G) = 0.11.

The reviewed models try to explain the power law degree distribution, loga-

rithmic diameter and the clustering effect that is noticed in the web graphs.

It is important to note that we do not wish for our model to describe all of

the micro properties seen in figure 2.1. For example, it would be almost useless

for a model to try to incorporate the notion of tendrils, since the model would

have to be very complicated and would not allow for any analytical results. It

is far more important for a good model to describe the overall behavior seen in

the empirical studies. To make a comparison to the world of physics, the laws

of Newtonian physics do not incorporate the notion of friction but describe in

general the dynamics of the objects.

The analytical results of the models reviewed will almost never produce ex-

actly the same results that are seen in the empirical studies. We perform such

comparison to see which model is able to produce the best results, and also to

demonstrate the ability of the model to adjust its parameters to fit the real life

data.

2.3 Mathematical Models

We review quickly a classical random graph model proposed by Erdos and Renyi

[18, 19]. In the model, the graph Gn,p has a fixed number of n vertices and a

probability parameter p. Each pair of vertices are connected independently with

the probability p or similarly, not connected with the probability (1 − p).

Most properties of the graph are solved asymptotically as n → ∞. We state

the results for the measures of interest to us, mainly, the degree distribution, the

diameter, and the clustering coefficient.
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Since each edge can occur or not occur with independent probability, the

model has a Poisson degree distribution. Thus,

P (k) =

(
n

k

)
pk(1 − p)n−k � (p(n − 1))ke−(p(n−1))

k!
.

The expected mean degree of each vertex is p(n − 1).

For the diameter of the random graph, we note that Diam(G) = ∞ if the

graph is disconnected. However, if pn/ log n → ∞ and log n/ log(pn) → ∞ then

with very high probability Diam(Gn,p) = O(log n/ log(pn))

The clustering coefficient is low, since the probability of connection between

two vertices is p regardless of whether they have a common neighbour. Thus,

C1 = p and C1(Gn,p) ∼ n−1.

Due to the fact that the random graph model does not explain the power

law degree distribution that is seen in the empirical studies on web graphs, new

models were developed that are reviewed in the next four sections.

The power law degree distribution was noticed much earlier in other networks.

For example, Zipf’s law, named after the Harvard linguistic professor George

Kingsley Zipf (1902-1950) states that if all the events are ranked in increasing

order or some measure of magnitude, then the probability that a random event

has rank k is P (k) ∼ k−α with exponent α close to 1. This relation was noticed

for the occurrence of words in a long piece of text. There was no model proposed

by Zipf to try to explain this observation.

2.4 Preferential Attachment Model

The preferential attachment model was proposed by Barabasi and Albert et al.

[4], [5] as a means to try to explain the power law degree distribution of the web

pages. It should be noted that most of the results obtained by Barabasi et al.

are through simulations. Theirs is not the first mathematical model that uses the

concept of preferential attachment to explain power law degree distribution. We

discuss this in more detail in section 2.4.2.
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2.4.1 Motivation

Barabasi and Albert et al. were the first researchers to discover that the web

graph has power law degree distribution [7]. The main motivation of this model

is to try to explain the observed characteristics of the web graph, mainly the

power law degree distribution and logarithmic diameter. The classical random

graph model does not explain these characteristics. Thus, they tried to take a

fundamentally different approach to modeling the dynamics of the network. In

order to explain the empirical results, they incorporate the ideas of growth and

preferential attachment into their mathematical model. The concept of growth

is not present in the random graph model since the model starts with a fixed

number of vertices. Surprisingly, Barabasi does not seem to acknowledge that

the building blocks of their model have already been proposed by other scientists

such as Price [30].

2.4.2 Model

The model has two distinctive properties: growth and preferential attachment.

Growth means that we start with an initial graph G0 at time t = 0, then a new

vertex v1 arrives at time t = 1 and attaches itself to old vertices with m edges.

This process continues indefinitely. Preferential attachment defines the method

in which the new vertex is connected to the vertices that are already in the graph.

Quoting Barabasi and Albert [4], “To incorporate the growing character of the

network, starting with a small number (m0) of vertices, at every time step we

add a new vertex with m (≤ m0) edges that link the new vertex to m different

vertices already present in the system. To incorporate preferential attachment,

we assume that the probability Π that a new node will be connected to node i

depends on the degree ki [let d(vi) = ki] of node i, such that:

Π(ki) =
ki∑
j kj

(2.7)

After t time steps, the model leads to a random network with t+m0 vertices and

mt edges.”
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We show how the model works through an example seen in figure 2.2 in the

next section.

In other words, an old vertex with the highest degree has the highest chance

of attaching itself to the new vertex. This is the well known phenomenon of “the

rich get richer”.

The only official parameter of the model is the value of m, which is the number

of edges that a new vertex will attach itself to the old graph.

While the explanation of the model is very simple, it also leaves a lot of

questions unanswered. There is no clear description of what the initial graph

G0 at time t = 0 looks like, other than the mention that the initial graph has

m0 vertices. The initial graph on m0 vertices, must have some edges as well,

otherwise, if there are 0 edges present, then the degree of each vertex is 0 and

so a new vertex will have a probability of 0 of attaching itself to any old vertex

in G0. Now, suppose that G0 has m0 vertices and c0 edges. Then after time t it

must have t + m0 vertices - which is stated correctly by Barabasi and Albert -

and also mt + c0 edges - which is not stated correctly.

It should be noted that this model is almost identical in description to Price’s

model [30]. In 1965 the physicist-turned-historian, Derek de Solla Price studied

the network of citations between scientific papers. He then discovered through

empirical studies that the in-degree and out-degree of the citation network fol-

lowed the power law distribution. In 1976, Price proposed a general model to

explain the power law distribution [30]. His idea was the probability that a newly

appearing paper cites a previous paper (a new vertex attaches itself to an old

vertex) is proportional to the number of citations the old paper already has (in-

degree of the old vertex). He called it cumulative advantage. Each new vertex

can be considered to start with in-degree of 1. The probability that a new edge

attaches to any vertex i with degree ki is:

Π(ki) =
ki + 1∑
j(kj + 1)

(2.8)

It can be seen, that this is almost identical to equation 2.7 of Barabasi and Albert.

Most of the analysis done on the Barabasi and Albert model was done through

simulation and thus we first present a possible simulation of the model.
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2.4.3 Simulation

In order to simulate and construct a network based on the preferential attach-

ment model the following algorithm is executed.

Start with: Some initial graph G0

Input: m

Repeat

Add new vertex vi to the graph

Loop m times

Attach vi to vertex u with probability: Π(ku)) = ku�
j kj

End loop

End repeat

Note that due to the unclear explanation of Barabasi and Albert, we might

have to ensure that a new vertex attaches itself to m different vertices.

Also note that due to the unclear explanation of Barabasi and Albert, it is not

clear with what initial graph we should start. However, the simulation studies

that are done for this model will still show the intended degree distribution and

the diameter growth regardless of the initial graph.

The algorithm is actually very easy to implement. More importantly, we now

discuss an approach that gives us linear running time with respect to the size of

the network.

We show the working of the approach through an example. Suppose we have

an initial graph with 4 vertices. Vertex 1 has degree 3, vertex 2 and vertex 3

have degree 2, and vertex 4 has degree 1. We then create an array with each

vertex entered as many times as its degree. In our example the array looks like

this: [1 1 1 2 2 3 3 4].

A new vertex 5 will be added to the graph and attached by m edges to old

vertices in the network. By selecting a random element from the array as the

target node we in fact select an old vertex with the needed probability for the

preferential attachment to hold. So vertex 1 will be selected with probability 3/8,
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vertex 2 with probability 2/8, vertex 3 with probability 2/8 and vertex 4 with

probability 1/8.

Suppose our random selection chooses vertex 3 as the target. Then the new

array will look like this: [1 1 1 2 2 3 3 4 5 3]. Note that the array never has to

be sorted.

We show the working of the model and the simulation in the figure 2.2.

1

2

34

5

1

2

34

Figure 2.2: The preferential attachment model dynamics. The new vertex 5

arrives and attaches itself with a probability of 2/8 to vertex 3.

2.4.4 Analytical and Simulation Results

Barabasi and Albert perform most of the analytical results by simulating the

model. While they do not explicitly state the inner working of their simulation,

it most likely closely follows the outlined steps in section 2.4.3. We present here

the simulation and the analytical results done on the model.

Degree distribution

Simulation results of the model show that the degree distribution follows the

power law with the exponent γ = 2.9±0.1 regardless of the value of the parameter

m.

Analytical results also find the power law coefficient to be γ = 3 regardless

of the value of the parameter m. We quickly review how Barabasi and Albert
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use continuum theory to obtain the power law coefficient. However, it has been

pointed out by Bollobas [11] that the analytical results reviewed here are math-

ematically incorrect. We point out the inconsistencies in the calculations as we

present them.

Note that it is not clear if the attachment process, as defined in the model, is

repeated with the same mechanics for each of the m new edge. The description

given by Barabasi and Albert seems to indicate that m edges are not added

independently and all of the edges must have a different endpoint. This can be

seen in the quote of their model in the previous section. However, formula 2.9

hold only if multi-edges are allowed.

All of the following calculations are quoted from [1]. Our discussion of the

calculations will appear between square brackets. Assuming that d(vi) = ki is a

variable that changes according to Π(ki) defined in (2.7) then it follows that we

wish to solve the dynamic equation:

∂ki

∂t
= mΠ(ki) = m

ki∑N−1
j=1 kj

(2.9)

The sum in the denominator is over all the nodes except the last new node added;

thus the value of the denominator is: 2mt − m leading to:

∂ki

∂t
=

ki

2t
(2.10)

[The following mistakes need to be pointed out. First of all, the initial num-

ber of edges from the initial graph G0 are ignored by the equation. Secondly,

equation 2.9 allows for multi-edges, while the description seems to indicate that

each new edge needs to be to a “different” old vertex. Finally, even if we make

allowances for the first two mistakes equation 2.10 should simplify to ki/(2t−1).]

We note that the initial condition is that every node i has initial degree of m

so ki(ti) = m (degree of vertex i when it arrives at time ti); thus the solution to

equation (2.10) is:

ki(t) = m

(
t

ti

)β

with β =
1

2
(2.11)

The above equation shows us that the degree of all nodes evolves the same way,

following a power law.
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[It has been verified that equation 2.11 is a correct solution to equation 2.10.]

We now calculate the value of P (k)- the probability that a random node has

degree k.

P [ki(t) < k] = P

(
ti >

m1/βt

k1/β

)
(2.12)

Assuming that we add the nodes at equal time intervals to the graph, the ti values

have a constant probability density, so:

P (ti) =
1

m0 + t
(2.13)

Substituting this into equation (2.12) we get:

P

(
ti >

m1/βt

k1/β

)
= 1 − m1/βt

k1/β(t + m0)
(2.14)

Then to get the degree distribution P (k) we use:

P (k) =
∂P [ki(t) < k]

∂k
=

2m1/βt

m0 + t

1

k1/β+1
(2.15)

Then asymptotically (t → ∞)

P (k) ∼ 2m1/βk−γ with γ =
1

β
+ 1 = 3 (2.16)

Indicating that the degree distribution is independent of m.

[There are no mathematical mistakes in the above equations, if we assume

that equation 2.10 is correct.]

It should be noted that the degree distribution is independent of time para-

meter t, and of the system size (N = m0 + t). This means that despite the fact

that the network keeps continuously growing it reaches a stationary power law

degree distribution.

Barabasi and Albert analyze both properties of their model, the preferential

attachment and the growth to see if both are needed to explain the power law

degree distribution of the vertices. First, they supposed that each new vertex

is attached to an old vertex with equal probability, thus keeping the growth
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in the model but removing the preferential attachment property. So, Π(ki) =

constant = 1
(m0+t−1)

.

Then continuum theory shows that the degree distribution decays exponen-

tially following: P (k) = e
m

exp(−k
m

). Thus, the power law characteristic disap-

pears [1].

Without growth, the network has N nodes and no edges at the start. Each

edge is added with preferential attachment. Simulations indicate that while at

the beginning the model has power-law degree distribution, after N2 steps all of

the nodes become connected. The degree distribution changes from the initial

power law to a Gaussian distribution.

Average path length

Barabasi and Albert simulate their model and verify the value of the average path

length [2]. Computer simulations conducted by Barabasi and Albert indicate

that the average path length increases approximately logarithmically with N . In

particular, they find that the average path length is: 〈d〉 = 0.35 + 2.06 logN

as seen in figure 2.3. For the empirical studies done by Barabasi and Albert,

since the size of the network is about 300,000 nodes, then 〈d〉 = 11.6, which

matches closely to the observed value of of 11.2 seen in their study. Note that

the simulation seems to be only performed for the parameter value of m = 1.

More simulations of the model performed later by Barabasi [1] show the av-

erage path length as a relation to the network size when the average degree of

each vertex is equal to 4, as seen in figure 2.4. It is not clear for what parameter

of m, will the average degree of a vertex be 4 in this model. They find that the

average path length is: 〈d〉 = A ln(N −B) + C for some constants A, B, C which

are not specified.

Note, however, that reading off the chart for the value when N = 105 (since

size of network is 350,000), we obtain an average path length of about 6, which

no longer matches the empirical results seen by Barabasi and Albert.
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Figure 2.3: Average path length (y axis) vs. size of network (x axis) when m = 1.

This figure is reproduced from the Barabasi, Albert and Jeong study [6] found

on page 71, as figure 1.

Clustering coefficient

Barabasi and Albert perform a simulation of their model to see the relationship

between the clustering coefficient and the size of the network [1]. The simulation

shows that if the average degree of each vertex is kept at 4, then the preferential

attachment model has a clustering coefficient that decreases approximately with

power law C = N−0.75 as seen in figure 2.5. It is not clear what definition of

clustering coefficient they use.

For N = 300, 000 this gives us a value of C = 7.8 × 10−5. However, the

clustering coefficient in their empirical studies seem to indicate that C1 = 0.29

and C2 = 0.11 ([26] see Table 3.1). Therefore, it seems that the predicted model

clustering coefficient does not fit the observed data.
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Figure 2.4: Average path length (y axis) vs. size of network (x axis) when average

degree is 4. This figure is reproduced from the Barabasi and Albert study [1]

found on page 74, as figure 23.

2.4.5 Pros/Cons

The preferential attachment model has a very simple and natural description

incorporating growth and preferential attachment. It manages to capture some

very important properties of real networks, such as the power law degree distri-

bution and logarithmic growth. While it is not the first model to describe power

law degree distribution, Barabasi and Albert were the first people to attribute

the power law degree distribution to the web graph.

A drawback of the model in describing the web graph is the fact that it is

undirected. While this leads to simpler mathematical results, it is not realistic.

Even if we consider a slight modification to the model where a new vertex attaches

itself with m directed arcs to existing vertices, then the resulting graph will be

directed, but still acyclic. This modified model is in fact exactly Price’s model

describing the scientific citations graph [29].
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Figure 2.5: Clustering coefficient (y axis) vs. size of network (x axis) when

average degree is 4. This figure is reproduced from the Barabasi and Albert

study [1] found on page 75 as figure 24.

One major drawback of the original Barabasi and Albert paper, in my opin-

ion and that of other mathematicians, is in the informal manner in which they

describe their model. They are not precise about many details of their model,

such as how the model behaves at the very beginning when there is only 1 vertex

present. Also, it is unclear if loops and multi-edges are allowed. We examine a

model by Bollobas and Riordan in the next section in which all descriptions are

mathematically well defined.

The observed characteristics of the model do not fit real data. First of all,

the web graph has been shown [13] to have a degree distribution with power law

exponent of 2.1 (for in-degree) and 2.7 (for out-degree). The preferential attach-

ment model only displays a power law exponent of 3 for the degree distribution.

The model’s only parameter of m has no effect on the degree distribution. The

average path length of the model has been shown to have logarithmic growth but

only for when m = 1. Simulations for when m = 2 shows that the average path
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length produced by the model is less than the value that has been observed in

the Barabasi and Albert empirical study. The clustering coefficient simulations

for the model seem to indicate a very low clustering coefficient. Empirical stud-

ies of Barabasi et al. have shown that the real web graph has a high clustering

coefficient.

Another drawback of the model is the fact that all vertices belong to one

single connected component. The web graph seen in the Altavista study done by

Broder et al. has one large connected component containing a large majority of

the nodes and many small unconnected components.

The model does not incorporate any local events in the network. Such events

can consist of node removal (a web page is no longer on the WWW), edge removal

(a link from a page is removed), new edge addition after the node has been added

(a link is added to the page at some later time) and a combination of any of the

above (such as switching a link to point to a different page, which amounts to

one edge removal and one edge addition).

The model gives a preference of attachment to older vertices. Adamic and

Hubberman have argued that older web pages do not necessarily have higher

degree. However, Barabasi et al. have countered, that on average, there is in fact

a correlation that older web pages have higher degree [6].

2.4.6 Conclusions

The preferential attachment model introduced a new way of thinking about math-

ematical models to describe real networks. The model captures the concept of

growth in the network and an attachment mechanism that produces the desired

power law degree distribution.

The simplicity of the model resulted in its popularity. However, it leaves a

lot of details unclear, and thus has incorrect (if any) analytical results. It does a

poor job at describing the real dynamics of the network.
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2.5 LCD Model

While the ideas of Barabasi and Albert were interesting and captured the at-

tention of a lot of scientists, the model they propose is not well defined. We

now present a model by Bollobas and Riordan [10] which is the same model as

the preferential attachment model with a different mathematical point of view.

The model is well defined, allows for multi-edges and loops and thus allows for

rigorous analytical results to be done.

2.5.1 Motivation

Bollobas wanted to define every aspect of the preferential attachment model and

present some mathematical tools that will allow exact formulas to be obtained for

the degree distribution, the diameter and the clustering coefficient. In particular

Bollobas and Riordan present the concept of linearized chord diagrams (LCDs)

to explain the model [11].

2.5.2 Model

We discuss the model by clarifying and giving precise definitions for each detail

of the preferential attachment model.

During the growth process of the model, a new vertex is added to the graph

and connected by m new edges to old vertices. Just like in the preferential

attachment model, m is the only parameter of the model. Multiple edges are

allowed between the same pair of vertices. Loops are also allowed in the model.

In the language of web pages this corresponds to a web page linking to itself (a

link to the top of the same page) or a multiple links to the same page (perhaps

multiple links to different sections of the same page).

In the preferential attachment model, it is not clear with which graph the

model starts with. Bollobas introduces the notation Gt
m to indicate a graph G

that is formed after t new vertices are added and with the model parameter m.

We define dGt
m
(v) as the degree of vertex v of the graph Gt

m. The model starts

with graph G1
1 which consists of a single vertex with one loop.
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Suppose for a moment that m = 1. Then the graph Gt
1 is formed from the

graph Gt−1
1 by adding a new vertex vi. A single new edge (since for now we

consider m = 1) between the new vt and the old vi is added where vi is chosen

with the following probability:

Π(i) =

{
dGt−1

1
(vi)/(2t − 1) 1 ≤ i ≤ t − 1

1/(2t − 1) i = t
(2.17)

So, an edge is added with the preferential attachment property. After t new

vertices are added, we have a total degree of 2t−2 in our graph. Since the model

allows for loops the total degree in the denominator is 2t − 1.

If m > 1, then each new vertex vt is connected with m edges where each

neighbour of vt is selected independently with probability defined in (2.17).

We present the linearized chord diagram (LCD) as mathematical tool that

allows us to study this model. In order to explain the dynamics of the LCD

model, we first concentrate on the case when the model parameter m is set to 1.

Definition 2.5.1 (LCD) An LCD is an n-pairing that partitions the set {1, 2, . . . , 2n}
into pairs, such that there are (2n)!/(n!2n) n-pairings.

An LCD with n-chords has 2n distinct points on the x-axis paired off by

semi-circular chords in the upper half plane. Each chord has a left endpoint and

a right endpoint.

Seen in figure 2.6 is an example of an LCD with 6 chords and thus 12 points

on the x-axis.

Given an LCD L we can form a graph φ(L) as follows. Starting from the

left, vertex 1 will be formed from all endpoints up to and including the first right

endpoint of some chord. In our example, the first right endpoint is 4. Vertex 2

will be formed from all endpoints up to and including the second right endpoint

of some chord (in our example, vertex 2 will consist of points 5 through 8), and so

on. In other words, we first identify all the right endpoints in the LCD L. Then,

we shrink the interval from 0 up to the first right endpoint to form vertex 1.

Then, shrink the interval from the first right endpoint to the second most right

endpoint to form vertex 2, and so on. Now replace each chord of L by an edge e.
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2 3 4 5 6 7 8 9 10 11 121

Figure 2.6: LCD with 6 chords on 12 points.

The edge e connects the vertex that corresponds to the left endpoint of a chord

to the vertex that corresponds to the right endpoint of a chord.

Seen in figure 2.7 is the resulting graph φ(L)=G6
1 that we obtain from the

LCD in our example. We label each vertex by the right endpoint to which it

corresponds.

12

11

10

9

8

4

Figure 2.7: The resulting graph φ(L) on 6 vertices with 1 edge added at each

step.

Suppose that L is chosen uniformly at random from all (2n)!/(n!2n) LCDs

with n chords. Then to see that the graph φ(L) has the same distribution as

shown in (2.17) consider the following situation. Take a random LCD L
′

with

n − 1 chords (thus φ(L
′
) has n − 1 edges) and add a new chord whose right
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endpoint is to the right of all n − 1 chords. Place the left endpoint of the new

chord into one of the 2n − 1 possible places, each chosen with equal probability.

Thus, in the graph φ(L′) we initially had n − 1 vertices connected to each other

by n − 1 edges and we have added a new vertex vn which is connected by a new

edge to another vertex with probabilities related to the degrees of the old vertices,

exactly as stated in (2.17).

We now discuss how the general graph Gt
m can be obtained from Gtm

1 , for

when the parameter m is set to any value [10].

Consider the LCD as a pairing of fixed random real valued points 1, 2, . . . , 2N

in the interval [0,1].

Let N = nm and let x1, x2, . . . , x2N be 2N distinct independent samples from

the uniform distribution of [0,1]. We may simply pair x2i−1 with x2i for all i. The

randomness of the order in which the xi appear in the interval between 0 and 1

guarantees that the LCD obtained from such a pairing is the uniformly random

LCD. To see this note, for any set {x1, x2, . . . , x2N} of 2N distinct elements of

[0,1], all (2N)! possibilities for the order in which x1, x2, . . . , x2N take these values

are equally likely.

Let M2(0, 1) be a random variable corresponding to a random variable with

density function 2x, 0 < x < 1. Now, let li be the left endpoints of each chord and

ri be the right endpoints of each chord in our LCD. Then {li, ri} = {x2i−1, x2i}
with li < ri. But P (x2i−1, x2i ≤ t) = t2, so the ri are independent M2(0, 1) random

variables. Also, given the set of rightmost endpoints r1, r2, . . . , rN , the random

variables corresponding to the leftmost endpoints l1, l2, . . . , lN are independent

and each li is distributed uniformly on the interval [0,ri].

To form the LCD as a pairing on the set {1, 2, . . . , 2N} we sort the right

endpoints (ri) in increasing order and then consider the ri between which each

leftpoint (li) lies.

We construct the graph Gmn
1 as follows: start with N = mn independent

M2(0, 1) random variables, r1, r2, . . . , rN . Sort the right endpoints into increasing

order to obtain R1, R2, . . . , RN , with R0 = 0. Let L1, L2, . . . , LN be independent,

with Li uniform on [0, Ri]. Then to obtain our LCD L we pair Li to Ri. Since

the variables R1, R2, . . . , RN are already in order, then if Rj−1 < Li < Rj then in

the graph Gnm
1 = φ(L) vertex i will be connected with an edge to vertex j.
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i 1 2 3 4 5 6 7 8 9 10

Ri 0.1 0.4 0.5 0.55 0.6 0.7 0.75 0.8 0.85 0.99

Li 0.05 0.09 0.41 0.11 0.42 0.12 0.56 0.3 0.32 0.76

Table 2.1: Table pairings for an LCD on N=mn where m=2, n=5 thus N=10.

The values of Ri is sorted in increasing order.

To obtain the wanted graph Gn
m we have to merge vertices in Gmn

1 into groups

of m. It only matters where the mth, 2mth, etc. right endpoints lie. So we are only

interested in every mth endpoint and the spacing between them. Let Wi = Rmi

for 1 ≤ i ≤ n and let wi = Wi −Wi−1 with W0 = 0. We also need to consider the

left endpoints of each chord. Let us define a random variable Li,r with 1 ≤ i ≤ n

and 1 ≤ r ≤ m, with Li,r uniform on [0, R(m−1)i+r ]. We may, in fact, work only

with random variables Wi and thus Li,r is uniform on [0, Wi] = [0, Rmi]. Thus the

graph Gn
m is obtained by taking m edges from each vertex i, 1 ≤ i ≤ n, joining i

to vertices ti,j, 1 ≤ j ≤ m, where ti,j = k if Wk−1 < Li,j < Wk.

The following example illustrates the construction. Let m = 2 and n =

5. Then N = mn = 10. We select N independent M2(0, 1) random variables

R1, R2, . . . , RN . Our Li are selected uniformly from the range [0, Ri] as seen in

table 2.1.

Our LCD L pairs of each Li with Ri and is shown in figure 2.8.

10.90.80.70.60.50.40.30.20.10

Figure 2.8: LCD on interval [0,1] with 10 arcs from Table 2.1.
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i 1 2 3 4 5

Wi 0.4 0.55 0.7 0.8 0.99

wi 0.4 0.15 0.15 0.1 0.19

Li,1 0.05 0.41 0.42 0.56 0.32

Li,2 0.09 0.11 0.12 0.3 0.76

Table 2.2: Table of values based on Table 2.1. Each Wi is every 2nd right endpoint.

Each value of wi is the length of the interval between two right endpoints.

This gives us Gmn
1 = G10

1 = φ(L) seen in figure 2.9.

1

3 4

5

6

789

2

10

Figure 2.9: Graph on 10 vertices with 1 edge added at a time formed from the

LCD in Figure 2.8.

Each Wi is every 2nd right endpoint and wi is the distance between two ad-

jacent Wi values. The variables Li,r are in the range of [0, Wi]. We obtain the

values seen in table 2.2.

This allows us to obtain our final Gn
m seen in figure 2.10.

We can summaries the description of Gn
m as follows: Let random variables Wi

and wi be defined as above. Given the Wi, define independent random variables

ti,r, 1 ≤ i ≤ n, 1 ≤ r ≤ m with

P (ti,r = j) =

{
wj/Wi j ≤ i,

0 j > i.
(2.18)
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1
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Figure 2.10: Resulting graph with 5 vertices and 2 edges added at each step

obtained from Table 2.2.

Then the graph formed by taking edges from i to ti,r has the same distribution as

Gn
m. The advantage of this approach is that we only need to be concerned about

conditions on Wi.

The mathematical tools of the LCD, and pairing on the [0,1] interval allow us

to perform analytical results.

2.5.3 Analytical Results

In order to analyze the graph Gt
m we can look at the snapshot picture of the graph

at any time instance t. However, we mostly look at the graph when t → ∞.

Given the precise specification of the model, Bollobas and Riordan derive

formulas for the values of interest.

Degree Distribution

Using the description of LCDs obtained from pairings Bollobas and Riordan ob-

tain a simple non-recursive definition of the distribution of Gn
m [11].

The following theorem describes the distribution of P (k) asymptotically for

all k ≤ n1/15 where n is the number of vertices in the graph.

Theorem 2.5.2 Let m ≥ 1 be fixed, and let Gm
n with n ≥ 0 be the random graph

33



process defined in the previous section. Let k be the total degree of a vertex. Let,

αk =
2m(m + 1)

k(k + 1)(k + 2)
,

and let ε > 0 be fixed. Then with probability tending to 1 as n → ∞ we have

(1 − ε)αk ≤ P (k) ≤ (1 + ε)αk

for every k in the range 0 ≤ k ≤ n1/15.

Note that from this theorem it is seen that P (k) ∼ 2m2k−3 which is equivalent

to equation 2.16 in the preferential attachment model.

Diameter

Calculations for the diameter were done by Bollobas and Riordan in the papers

[10] and [9].

By considering an LCD as pairing on the [0,1] interval, as described in section

2.5.2. In particular Bollobas and Riordan are able to compute the formula for

the diameter of Gn
m.

Theorem 2.5.3 Let m ≥ 2 and let ε > 0 be fixed numbers. Then with high

probability the graph Gn
m with n > 0 is connected and has diameter satisfying:

(1 − ε) ∗ (log n/ log log n) ≤ Diam(Gn
m) ≤ (1 + ε) ∗ (log n/ log log n).

Note that the theorem only address the case when the model parameter is

m ≥ 2.

When m = 1 the graph Gn
m has a simple structure. The graph is a collection

of trees, each with a loop attached. Each tree is almost identical to a structure

called a random plane-oriented recursive trees [24]. Pittel [27] has shown that the

maximum distance from any random vertex to the root of the tree is (c+o(1)) log n

with probability 1−o(1) where c = (2γ)−1 such that γ is the solution of γe1+γ = 1.

Then, we see that the diameter is (2c + o(1)) log n. Pittel’s method in [27] can

be used to prove the following theorem about Gn
1 .
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Theorem 2.5.4 Let γ be the solution of γe1+γ = 1, and let ε > 0 be fixed. Then

for almost every Gn
1 the largest distance between two vertices (diameter) in the

same component is between (γ−1 − ε) log n and (γ−1 + ε) log n.

The Barabasi and Albert study finds that the diameter of the graph is 11.2 on

325,000 nodes. The average vertex degree is 4.51, thus m > 1. Then, the theorem

predicts that a graph G produced by the model will have Diam(G) = 7.44. The

Altavista graph had a SCC component of 56 million nodes and a directed diameter

of 28, a directed average distance of 16 and an undirected average distance of 6.83

[13]. On 56 million nodes, the theorem predicts that a graph G produced by the

model will have Diam(G) = 8.71.

Clustering Coefficient

Bollobas uses the LCD model to calculate the expected clustering coefficient [9].

He uses definition 2.1.5 for the clustering coefficient. Bollobas has stated and

proven the following theorem:

Theorem 2.5.5 Let m ≥ 1 be fixed. The expected value of the clustering coeffi-

cient C2(G
n
m) satisfies:

E(C2(G
n
m)) ∼ m − 1

8

(log n)2

n

as n → ∞.

Empirical results for the clustering coefficient were only done by Barabasi and

Albert et al. They find that C1 = 0.29 and C2 = 0.11. The average degree in

the 325,000 node graph was 4.51. Bollobas assumes that the average degree of 4

happens when m = 2. Then, plugging in m = 2 and n = 325, 000 into the above

theorem we obtain an expected value of the clustering coefficient of 1.25 × 10−5.

2.5.4 Pros and Cons

An advantage of the LCD model is that Bollobas and Riordan give very strict

definitions for the model. The model allows for multiple edges and loops. By
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describing the model through well defined mathematical structures such as the

LCD and the random pairings on [0,1] interval, they are able to obtain formulas

for the values of interest. The power law degree distribution has been shown

for vertices whose degree is not too high in relation to the total number of ver-

tices. There are explicit formulas for the diameter and the expected value of the

clustering coefficient.

The disadvantages of the LCD model are mostly inherited from the preferen-

tial attachment model. The LCD model is undirected. The power law coefficient

for the degree distribution is equal to 3 regardless of the parameter of m. The

diameter of the network has been shown to be sublogarithmic in the model, but

the Altavista study indicates that the diameter is in fact greater than (log n). The

clustering coefficient formula indicates a low clustering coefficient, which does not

correspond to the empirical results seen in the Barabasi and Albert study.

The model does not allow for deletion of nodes or edges.

2.5.5 Conclusion

The LCD model is very well defined and provides mathematical formulas. How-

ever, it does not provide any parameters which can be set to specific values and

would allow the model to produce values of interest that are close to the real data

seen through empirical studies.

2.6 Aldous Model

Aldous presents a mathematical model that tries to describe the directed version

of the web graph. He bases his model on an underlying geometry and builds up

the network through growth.

2.6.1 Motivation

Aldous presents a two-parameter stochastic model of random graphs that hopes

to explain the web graph. The model reviewed here is a two-parameter mean-field
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simple copying (MFSC) model. The mathematical structures which are used in

the model are discussed below.

PWIT

The model uses an underlying geometry for its graph that is based on the Poisson

Weighted Infinite Trees (PWIT), which we describe below.

The Poisson weighted infinite tree is defined by a construction. First of all,

the PWIT is a tree. Like every tree, there is a root vertex. We label the root

vertex as 0. This root vertex is given an infinite number of links to its children

vertices, which is why we call it an “infinite tree”. Each link has a real-valued

length. The root has a finite number of vertices within any fixed distance from

the root. Each link length has the law of a Poisson process (ξi, 1 ≤ i < ∞) of

rate 1 on (0, ∞).

Recall that a Poisson process of rate 1 on (0, ∞) is defined as follows:

• The numbers of changes in non overlapping intervals are independent for

all intervals

• P(some ξi ∈ [x, x + dx]) = 1 · dx, 0 < x < ∞. So probability of exactly one

change occurring in a small interval is equal to the size of the interval.

• Probability of two events occurring in a small interval is 0.

Suppose that ξi are the link lengths that are sorted in increasing order such that

0 < ξ1 < ξ2 < ξ3 < . . .. then a Poisson process of rate 1 is defined by the property

ξ1, ξ2 − ξ1, ξ3 − ξ2, . . . are independent with Exp(1) distribution

Note that the exponential distribution Exp(µ) has probability density function:

f(x) = µe−µx, 0 < x < ∞

So, Exp(1) has probability density function f(x) = e−x, 0 < x < ∞.

Now, recursively, each vertex v arising as a child of a previous vertex is given

an infinite number of links to its children and these link lengths again have the

law of a Poisson process of rate 1, independent of previous lengths.

37



A nice property of the PWIT is self-similarity: the sub-trees at each child of

the root are independent copies of the PWIT itself.

An example of a PWIT is seen in figure 2.11.

Figure 2.11: The PWIT centered at the root vertex 0, showing all children with in

distance of 3 from the root. The root actually has an infinite number of children.

The edge (0, i) has length ξi. Note that 0 < ξ1 < ξ2 < ξ3 < ξ4 < 3.

Since the PWIT is used as an underlying geometry of the model, let us explain

some of the more interesting details of the structure. First of all, there is a

concept of distance between two nodes in the graph. In this model, the distance

has nothing to do with the number of links that have to be followed to get from

one web page to another. In the language of the web pages, Aldous indicates

that the distance between two web page should be thought of as the similarity of

content between the two pages. For example, two pages about the topic of Golf

will be close to each other.

38



2.6.2 Model

We first describe the dynamics of the model.

a) Vertices n = 1, 2, 3, arrive successively. Vertex n arrives at time t(n) = ln n.

So at some time t there are n = et vertices. The model can be indexed by

number of vertices or equivalently by time, but it is more convenient to

index it by the number of vertices.

b) When vertex n arrives at time t(n), there are links lengths that are defined

from n to each vertex j where 1 ≤ j < n. Each link-length d′(n, j, t(n)) is

random with exponential (mean n) law, independent of other link-lengths.

c) The link-lengths increase with time at deterministic rate 1. So at time

t > t(n) the link (n, j) has length d′(n, j, t) = d′(n, j, t(n))et−t(n).

d) At time t the distance d(i, j, t) between two vertices i, j (where i, j ≤ et =

number of vertices present) is defined as the minimum, over all paths from

i to j, of the length of the path (i.e. sum of link-lengths along the path).

Points a-d describe a geometry of an evolving random discrete metric space.

Note that the geometry is the dynamic version of the PWIT. The link lengths

defined by d′(·) follow a Poisson process of rate 1. Point (c) makes the PWIT

dynamic, because the link lengths increase with time. In the language of the web

graph, we can consider web pages changing constantly with time. So, as time

increases, the web pages might change in content and be slowly farther away

from each other in their similarity.

When a new vertex is added to the graph, it attaches itself with the following

dynamics:

e) When vertex n arrives at time t(n), for each 1 ≤ i < n:

1) A directed edge (n, i) is created with probability p(d′(n, i, t(n))

2) For each j < n such that (i, j) is an existing edge in the graph, a

directed edge (n, j) is created with probability p(d′(n, i, t(n)).
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Two important remarks on (e).

1) The probabilities depend on link-lengths d′(·) and not metric distance d(·).
2) The probability that an existing edge (i, j) is “copied” to a new edge (n, j)

depends on the link-length from n to the “tail” i, not to the “head” j.

Let us explain step (e) in the language of web pages. Step (e)(1) creates

direct links from the new node to the old nodes. For example, suppose we create

a new page about the topic discussed here, web graphs. We would link directly

to certain sources, and with high probability we would link to the sources that

are very similar to us, therefore, nodes that have small link distances from us.

So, we might link to a web page of Barabasi, a web page of Bollobas, a web

page of Aldous and a web page of Pralat. Step (e)(2) copies links from certain

nodes. We would trust the sources of pages that are closest to us (having very

similar content as us). Continuing the example, we might copy two links from a

Bollobas web page. But we might also copy a link from the web page of Broder

(for example to a web page about his Altavista study) even though we do not

directly link to his page. This step of the model allows us to create links to pages

farther away, as long as we trust the source of the link.

Note that in point (e) new edges are created with a probability function. The

two parameters of the model: α, λ > 0, enter via this probability function:

p(x) = min(1, αλe−λx), 0 ≤ x < ∞.

It is required that ∫ ∞

0

p(x)dx < 1. (2.19)

Equation 2.19 holds for two parameter ranges. We show the calculations for

these ranges.

Suppose αλ ≤ 1. Then p(x) = αλe−λx for 0 ≤ x < ∞. Then,

lim n → ∞ α
∫ n

0
λe−λxdx =

lim n → ∞ α[−e−λx]n0 =

lim n → ∞ α[−e−λn + e−λ0] =

α[0 + 1] =

α (2.20)
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Thus, when αλ ≤ 1 we require α < 1.

Now suppose αλ > 1. Then,

p(x) =

{
1 if x <

log 1
αλ

−λ

αλe−λx otherwise

Now we need to solve
∫ n

0
p(x)dx < 1.

lim n → ∞ ∫ log 1
αλ

−λ

0 1dx + α
∫ n

log 1
αλ

−λ

λe−λx =

lim n → ∞ log 1
αλ

−λ
+ α[−e−λx]n

log 1
αλ

−λ

=

lim n → ∞ log(αλ)
λ

+ α[−e−λn + e−λ
log 1

αλ
−λ ] =

log αλ
λ

+ α
αλ

=

1
λ
[(log αλ) + 1] (2.21)

Thus, when αλ > 1 we require 1/λ · (log(αλ) + 1) < 1.

The analytical results will always make a distinction between these two regions

of solutions. Aldous calls the ranges as “low” (for αλ ≤ 1) and “high” (for

αλ > 1).

0 < λ ≤ 1/α 0 < α < 1 [low]

αλ > 1 1/λ · (log(αλ) + 1) < 1 [high]

It is convenient to reparameterize the “high” region by using η = λ−1 log(αλ).

Thus, the parameter ranges for the high clustering region becomes:

0 < η < 1, η + 1/λ < 1 [high]

2.6.3 Analytical Results

The parameter α and λ and the value η = λ−1 log(αλ) could be used to control

the mean degree value and the clustering value.
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Let din(v) correspond to the in-degree of a random vertex and dout(v) corre-

spond to the out-degree of a random vertex. Then,

E(din(v)) = E(dout(v)) = ∂ =

{
α

1−α
[low]

η+1 λ
1−η−1/λ

[high]
(2.22)

This corresponds to the expected value of the average degree of a vertex.

Just like we did with η, there are other parameterizations that can be done.

In particular we define a value βu for integers u ≥ 1 as:

βu =

{
αuλu−1(1/u) [low]

η + 1
uλ

[high]
(2.23)

For a directed graph we define the normalized clustering coefficient κ as: the

proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is also a directed

edge. The parameter κ gives an overall measure of triangle density and is a

directed version of the definition 2.1.5 of C2.

We now look at how the parameters can be used to control the clustering

coefficient.

κ =

{
α(1−α)λ
2−α2λ

[low]
(η+ 1

2λ
)(1−η−1/λ)

(η+1/λ)(1−η− 1
2λ

)
[high]

(2.24)

The two regions can be specified as:

0 < ∂ < ∞, 0 < κ ≤ 1
∂+2

[low]

0 < ∂ < ∞, 1
∂+2

< κ < 1 [high]

So the two model parameters have a direct interpretation in terms of mean degree

and clustering. The regions can be thought of as “high” and “low” clustering

regions.

Every pair of values of ∂ with 0 < ∂ < ∞ and κ with 0 < κ < 1 occurs for a

unique parameter pair (α, λ).

Let us use the Barabasi and Albert study to show an example how the values

of (α, λ) or (η, λ) can be found. The mean degree is ∂ = 4.51. The definition of

κ is a directed version of C2, thus let κ = 0.29.

First, find if we are in the “high” or “low” clustering region.

1

∂ + 2
=

1

4.51 + 2
= 0.15.
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Since κ = 0.29 > 0.15, we are in the ”high” region. Now use the mean degree to

find the value of η + 1/λ.

∂ = 4.51 =
η + 1 λ

1 − η − 1/λ
=

X

1 − X
.

Where we let X = η + 1/λ. Then,

X = η + 1/λ = 0.8185 (2.25)

We now use the value of κ to find the value of η and λ.

κ = 0.29 =
(η + 1

2λ
)(1 − η − 1/λ)

(η + 1/λ)(1 − η − 1
2λ

)
.

Let Y = η + 1
2λ

. Then,

0.29 =
Y

1 − Y
· 1 − 0.8185

0.8185
.

Then,

Y = 0.57 = η +
1

2λ
(2.26)

Subtracting equation 2.26 from equation 2.25 we get λ = 2.01. Plugging this

back into equation 2.25 we get η = 0.331. Thus, the unique parameter values of

(η, λ) = (2.01, 0.331).

Degree Distribution

We introduce some standard statistical notation for the binomial distribution

(Bin(m, p)), geometric distribution (Geo(p)) and Poisson distribution (Poi(p)).

The geometric distribution, Geo(p) is where:

P (i) = (1 − p)i−1p i = 1, 2, . . .

E(Geo(p)) = 1/p

The binomial distribution, Bin(m, p) is where:

P (i) =

(
m

i

)
pi(1 − p)m−i i = 1, 2, . . . , m

E(Bin(m, p)) = mp
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The Poisson distribution, Poi(p) is where:

P (i) = e−ip−i/i! i = 1, 2, . . .

E(Poi(p)) = p

We have already defined the parameter βu and we point out that when u = 1,

β =

{
α [low]

η + 1/λ [high]
(2.27)

The in-degree distribution works out to:

Pin(k) ∼ β−2Γ(1/β)k−1−1/β. (2.28)

Where the gamma function is defined as follows:

Γ(a) =

∫ ∞

0

ta−1e−tdt. (2.29)

So the power law coefficient is γ = 1 + 1/β. We continue our example from

the Barabasi and Albert study. We have found in the previous section that we

are in the “high” clustering region. Then β = η + 1/λ = 0.8185. Then γ = 2.22.

This is pretty close to the value of 2.1 found in the Altavista study for the in-

degree power law coefficient. We can set η +1/λ = 0.91 to simulate the in-degree

distribution with power law coefficient of 2.1.

The out-degree distribution is much more complicated to find. Aldous is not

able to extract a useful explicit formula for the distribution. The out-degree of

the root vertex takes on the following form.

dout(root) =

∞∑
i=1

Bin(1 + d
(i)
out, p(ξi)) (2.30)

Where d
(i)
out is the out-degrees of vertex i and acts as a random variable distributed

the same as dout(root). Also, d
(i)
out is sorted in increasing order of distance from

root. The distance of vertex i from the root is ξi.

Aldous computes moments of the above out-degree. Suppose we fix α. In the

limit λ → 0 then Pout(k) ∼ Poi(α). In the case when αλ = 1 then Pout(k) ∼
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Geo(1−α). Both of the above cases do not produce power law out-degree distri-

bution.

In this model the distributions of din(v) and dout(v) are independent. Also,

because both din(v) and dout(v) can take the value 0, we see that P (din + dout =

0) > 0, which implies that the graph will typically be not connected.

Diameter

Aldous has not been able to prove any specific results about the diameter or the

average path length of the graph produced by the model. It is his conjecture that

the average path length and the diameter are:

(1 + o(1)) · log n

log log n
as n → ∞

He does not even prove the weaker result that the average path length is O(log n)

as n → ∞.

Clustering Coefficient

The value κ gives an overall measure of triangle density. Aldous uses definition

of Cv (used to compute C1 in definition 2.1.4) to compute the distribution of the

clustering coefficient. A random vertex v with d(v) = k, will have the value of

Cv of:

Cv(k) ∼ 2β2

β − β2
· 1

k
as k → ∞ (2.31)

This distribution has not been computed in any empirical studies.

2.6.4 Pros and Cons

The Aldous model is the only reviewed model that generates a directed web

graph. However, a disadvantage of the model is that it only produces an acyclic

graph, so there are no directed cycles.

The model is based on an underlying geometry and thus, each edge has notion

of a distance. The distance between two web pages has a very natural correspon-

dence to the similarity between two web pages. In my opinion, the dynamics of

the PWIT geometry are also very natural.

45



Aldous is able to present many analytical results about the model. I think the

underlying mathematical structures are elegant and present future researchers

with many tools that can be used to try to solve the open problems in this

model. An advantage of the model is that analytical results can be done for all

possible values of clustering (between 0 and 1) and for all possible values of the

mean degree (from 0 to ∞). For comparrison, the next model reviewed (Protean

model), only provides analytical results for a small subset of the parameter values.

The in-degree has been shown to have a power law distribution and the pa-

rameters allow us to set the distribution to be exactly the same as the observed

empirical value.

A disadvantage of the model is that there are no explicit formulas for the

out-degree distribution. There are also no formulas for the average path length

or the diameter of the graph. Thus, it is not certain if these values will fit in with

the simulation results.

It is highly probable that the graph generated by this model is not connected.

This can be viewed as both and advantage and a disadvantage. Empirical study of

Broder et al. show that real web graphs have unconnected components containing

about 10% of the nodes and shows an existence of a large strongly connected

component[13]. Aldous does not indicate the size of the connected component

generated by the model.

The in-degree and the out-degree are independent in this model. Aldous

indicates this as a disadvantage of his model.

2.6.5 Conclusion

The model and its dynamics are very natural, but are also very mathematically

sophisticated. This presents a tradeoff of the model being able to explain a lot

of events that occur in the real web graph, but at the same time making a lot of

analytical results difficult to obtain. The model shows great promise, and future

work should be done to see if the diameter and the out-degree distribution do in

fact follow the empirical results.
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2.7 Protean Graph model

A new random graph model called the Protean Graph Model was presented by

Pawel Pralat in his PhD. dissertation [28] (written in Polish) and presented in

[22] as joint work with Tomasz Luczak. The model is based on the ideas of the

random graph model from Erdos-Renyi.

2.7.1 Motivation

The model is motivated by the classic random graph models but introduces pa-

rameters that allow the degree distribution to follow the power law.

There is no growth in the model, as it starts out with a fixed number of n

vertices. Vertices are deleted and added back to the graph. These dynamics

can be thought of as the removal of web pages from the web graph and to the

addition of new web pages to the web graph. Analytical results of the model are

done asymptotically as n → ∞.

2.7.2 Model

We denote Pn(d, η) as a protean graph on n vertices with set model parameters d

and η. The model is controlled by two parameters, d ∈ N and η, where 0 < η < 1.

The parameter d is the number of edges with which a new vertex connects itself

to the old vertices. The parameter η is used to allow the new vertex to have a

preference of attachment to the old vertices in the graph.

We describe the dynamics of the model.

Start with any graph G with n vertices. It is even fine to start with an empty

graph G with n vertices and no edges, but we will use a cycle as the initial graph in

our examples. Let the vertices be labeled 1, 2, . . . , n. Denote [n] = {1, 2, . . . , n}.
We assign an initial permutation σ : [n] → [n] to the vertices. For simplicity

assume that the initial permutation is simply that vertex i is assigned label i (i.e.

σ0(i) = i). We call σ(i) the rank or the age of the vertex. Then the vertex v

where σ(v) = 1 is the oldest and the vertex u where σ(u) = n is the newest.

In each step, we randomly pick one of the vertices v to be “renewed”. Thus,

we delete from G all edges incident to v. This corresponds to a removal of a
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random node from the network, or in the language of web graphs, a removal of

a web page. Suppose the selected vertex v had rank k, so σj−1(v) = k. The

removed vertex gets moved to the end of the permutation, and thus becomes the

newest vertex, so σj(v) = n. All other vertices who had rank higher then k move

up in the permutation by one, so σj(u) = σj−1(u)−1 for all u where σj−1(u) > k.

Now we generate d new edges - one by one - incident to the new vertex v.

This can be viewed as a new node that is inserted into the graph and which

establishes connections with some nodes in the network, or in the language of the

web graphs, as a new web page creating link to existing web pages. In each of these

d independent choices, each neighbor of v (vertex w) is chosen with probability

proportional to the rank of w raised to the power −η. Authors state that it

seems natural to assume that old web pages of small rank are more attractive to

newcomers.

The figure 2.12 demonstrates the dynamics of the model through an example.
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Figure 2.12: Initial graph G with vertex 5 chosen to exit and re-enter. The vertex

has a new rank of 8 when it reenters the graph.

If each vertex is renewed at least once, the random graphs appearing during

the process are identical random objects whose properties do not depend on the

graph G we start with. It takes a bit of time for the process to reach a stationary

distribution. By the “coupon collector problem” we see that after an expected

number of O(n ln n) steps each vertex is renewed at least once.
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To see this, we state the Coupon Collector Problem as follows: Given N

different objects, how many tries will it take to select each one of the objects at

least once if we choose each object with equal probability and with replacement.

Then the expected time to select each object at least once is:

E[time to select N different objects] = 1 +
N

N − 1
+

N

N − 2
+ · · ·+ N (2.32)

To see this consider the following. On our first selecting we only need 1 try to

select a new object that has never been seen before. On our second selection,

there are N objects to select from, and only N − 1 objects that have never been

seen, so that gives an expected number of N
N−1

trials before we select some new

object. At the very end, we will only have 1 object that has never been selected,

and N objects to select from, therefore it will take an expected N trials before

we find the object we are looking for.

Equation 2.32 can be simplified to:

N
N−1∑
i=0

1

N − i
=

N

N∑
i=1

1/i =

N

∫ 1

1/N

�xN�−1dx + 1/N =

N (1 + o(1))

∫ 1

1/N

1

xN
dx + 1/N =

N (1 + o(1))

∫ 1

1/N

dx

x
+ 1/N =

N (1 + o(1)) (ln 1 − ln 1/N) + 1/N =

N (1 + o(1)) (ln N) + 1/N =

(1 + o(1)) (N ln N) (2.33)

Thus, the expected time to select N different objects is O(N ln N).
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2.7.3 Analytical Results

The model has a fixed number of nodes in the graph. This static property of the

protean graph model allows for easier analytical results to be done.

Degree Distribution

We first state the exact theorem as proven in [22] about degree distribution.

Theorem 2.7.1 Let η ∈ (0, 1), k ≥ log2 n, and d = o(k). Then with probability

tending to 1 as n → ∞

P (d(v) ≥ k) = (1 + o(1))

(
1 − η

1 + η
· d

k

)1/η

.

Note that the theorem only states the formula for degree distribution for

vertices whose degree is greater than k. It can be shown that P (k) ∼ k1−1/η.

For the web graph the in-degree k has power law tail with k−2.1. The out-

degree k has power law tail with k−2.7. So, γ = 2.1 = 1 + 1/η means that we

can set η to 0.91 if we want the model to simulate the in-degree distribution.

Similarly, γ = 2.7 = 1 + 1/η means that we can set η to 0.588 if we want the

model to simulate the out-degree distribution.

Diameter

We state the exact theorem as proven in [23] about the diameter of the graph

produced by the protean graph model.

Theorem 2.7.2 Let d ≥ 13, and 0.58 ≤ η ≤ 0.92. A protean graph has one

giant component, containing a positive fraction of at least n2/3 vertices, whose

diameter is equal to Θ(log n). The remaining components have O(log n) vertices.

Note that η falls in the parameter range for the data to fit the degree distri-

bution seen in the web graphs. The value of the parameter d ≥ 13 is limiting.

The average degree of a vertex is 10.46 in the Altavista graph, and thus there

are many vertices who attach themselves with less then 13 new vertices. It is
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possible that the mathematical results could be shown to hold for values of d

much smaller.

It is interesting to note that this models allows for a single giant connected

component as well as for smaller components not connected to the giant com-

ponent. The Altavista graph indicates that indeed there is one large connected

component as well as small unconnected components that exist.

Clustering Coefficient

The clustering coefficient of the protean graphs is not studied by the authors.

However, through personal communications it seems that the model has no ex-

plicit clustering preference. Simulation results show that the clustering coefficient

is low, and thus will not correspond to a realistic value found in web graphs.

2.7.4 Pros and Cons

A disadvantage of the model is that it is for an undirected graph.

The advantage of the protean graph model is that it tries to incorporate the

concept of node deletion and node insertion in its model dynamics. However,

a disadvantage is that the deletion and insertion is limited, and the number of

nodes in the graph does not grow or shrink as time goes to infinity.

The analytical results on the model provide formulas for the degree distrib-

ution and the diameter of the graph. The parameter η can be used to set the

degree distribution to be the same as observed through empirical studies. The

graph has a large connected component and some unconnected components. This

fits in with the empirical results from the Altavista graph. The diameter of the

graph is logarithmic in growth, which is realistic. The results on diameter calcu-

lations are limited to when the parameter of d ≥ 13, which may not hold in real

networks.

Analytical results are not done on the clustering coefficient.

The model adds edges with priority to vertices with low rank (older vertices).

We have discussed this assumption in the preferential attachment pros and cons,

in section 2.4.5.
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2.7.5 Conclusion

The model has simple well defined dynamics. It tries to incorporate the concept of

deletion and addition of web page in the web graph. However, the proposed model

has no growth. The degree distribution follows a power law and a parameter of

the model allows us to control the power law coefficient. The analytical results

are a bit limited in their range of parameter values for the diameter and degree

distribution.

2.8 Concluding Remarks

The world wide web is an important technological innovation that has become

a part of almost everyone’s life. Yet, the structure and even the properties of

the web graph remain largely unknown. Mathematical models are created to try

to explain this important phenomenon. Any mathematical model should try to

provide explicit formulas for various quantities of interest. The model should also

provide parameters that can be used to fit real data. Finally, a model should have

a natural description explaining the dynamics of the web.

We summarize the reviewed models in the table 2.3.

BA LCD Aldous Protean

Directed No No Yes No

Growth Yes Yes Yes No

Parameters 1 1 2 2

Power law Degree

Distribution

Yes (γ = 3) Yes (γ = 3) Yes (in); ?? (out) Yes

Log Diameter Yes Yes ?? Yes

High Clustering No No Yes ??

Table 2.3: Summary of all the models.

Out of the models reviewed here, none of the models have all the required

properties. The simpler models provide a rich variety of analytical results, but

do not fit in with the empirical data. The more sophisticated models explain
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some of the real web graph dynamics better, but are more difficult to understand

and perform analytical results on.

There is currently no model that accepted by everyone as the authoritative

source which fully describes the web graph. It would be beneficiary to see more

large publicly available studies being done on the web graph. This would allow

us to see the progression of some of the properties of the web graph over time,

and provide better data with which to analyze and create mathematical models.
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Chapter 3

Integrality ratio of the 2EC

problem on multigraphs

3.1 Carr-Ravi Result

Given a connected undirected complete graph G = (V, E) and non-negative edge

costs c : E → R+, the 2EC subgraph problem is to find a multiset F of edges of

minimum cost such that the subgraph H = (V, F ) is 2-edge connected. Note that

we allow F to contain multiple copies of an edge of G. An integer programming

formulation for the 2EC problem follows:

min
∑

e∈E cexe

s.t. x(δ(S)) ≥ 2 ∀ ∅ � S � V

xe ≥ 0 ∀ e ∈ E

xe integral ∀ e ∈ E

(2EC-IP)

The LP relaxation (2EC-LP) is obtained by dropping the integrality con-

straints on x. Denote the optimum objective value of (2EC-IP) by ZIP , and

the optimum objective value of (2EC-LP) by ZLP . Suppose that the optimum

values of x∗ in (2EC-LP*) only have values 0, 1/2 or 1. Denote the objective

value obtained by this half-integral optimal solution as ZLP (1/2). Denote the edge

incidence vector for a given subgraph H by χH .
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First we show that if the cost vectors do not follow the triangle inequality

relationship, then we can replace the graph by its metric completion (where cij

for each edge takes on the value of the shortest cost ij − path). Note that if

an edge that was made cheaper in the metric completion appears in the optimal

solution of (2EC-IP), we can replace it by the shortest cost path connecting node

i and j without increasing the objective value. Thus, WLOG, we can assume

that the cost vectors follows the triangle inequality constraints.

We add a constraint x(δ(S)) = 2 ∀v ∈ V to obtain the LP (2EC-LP*).

min
∑

e∈E cexe

s.t. x(δ(S)) ≥ 2 ∀ ∅ � S � V

x(δ(v)) = 2 ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

(2EC-LP*)

We now show that if the costs follow the triangle inequality relationship (that

is if cij ≤ cik + cjk for all distinct i, j, k ∈ V ) then there is an optimal solution to

(2EC-LP) that is also feasible and thus optimal for (2EC-LP*).

Splitting-Off Theorem: Given a connected, Eulerian graph G and any ver-

tex v, there exists an edge pair vx, vu such that G′ = G − vx − vu + xu has

| δG′(S)| = | δG(S)| for every node set S ⊆ (V − {v}). Moreover, if G is k-edge

connected and | δG(v)| ≥ k + 2, then G′ is k-edge connected.

Theorem 3.1.1 In a graph G = (V, E) with costs following the triangle inequal-

ity constraints, the optimum objective value of (2EC-LP*) is the same as the

optimum objective value of (2EC-LP).

Proof. Let x∗ be the optimum solution of (2EC-LP). If for all v ∈ V the constraint

x∗(δ(v)) = 2 holds, then we are done. Suppose there are vertices for which this

constraint does not hold. Multiply x∗ by some large value M such that each entry
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entry in the x∗ vector is an even integer. Let H by the multi-graph of Mx∗. Let

v′ be any node where x∗(δ(v′)) ≥ 2 in G and thus degree of v′ in H is ≥ 2M + 2.

Since the degree of each vertex is even, then H is a Eulerian graph. We apply

the Splitting-Off Theorem to split off the edges incident to v′ to lower its degree

by 2. The splitting off operation preserves the edge connectivity of the graph H .

Also, the splitting off operation will replace some edges uv′, yv′ (where u and y

are some two neighbours of v′) with a single edge uy. Since the costs follow the

triangle inequality, the overall cost of the objective function does not increase

by the operation. We repeat the splitting off operation until x∗(δ(v′)) = 2M for

all v′ ∈ H . Now scale back by dividing the x∗ vector by M to get x satisfying

(2EC-LP*).

We now state the main theorem that we will prove. This result is due to

Carr and Ravi [14]. Our proof is a simplification of their proof and relies on

the splitting-off theorem, which is not used explicitly by the Carr-Ravi proof.

Moreover, our proof uses a weaker result (in 3.1.3) than theirs, because we allow

multiple copies of an edge to be used in our proof.

Theorem 3.1.2 The optimum value of 2EC-IP is within 4/3 of the half-integral

solution of the 2EC-LP. So, ZIP ≤ 4/3 ∗ ZLP (1/2)

In order to prove this theorem, we prove another result.

Theorem 3.1.3 Let G = (V, E) be a 4-edge connected, 4-regular graph. Let e by

any fixed edge of G. Then

2/3 ∗ χG−e =
∑

i

λiχ
Hi. (3.1)

Where each Hi is a 2EC subgraph where we allow multiple copies of the same

edge to appear. Also, λi ≥ 0 and
∑

i λi = 1.

Theorem 3.1.3 implies Theorem 3.1.2. To see this, let x∗ be a 1/2-integer

solution for (2EC-LP*). Construct a multigraph G(x∗) where we take two copies

of each edge for which x∗
e = 1. We can think of this as multiplying the LHS and

the RHS of (2EC-LP*) by 2. Thus, G is a 4-regular, 4EC multigraph.
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Let us think of
∑

i λiχ
Hi as a weighted average over all 2EC subgraphs. Then

the cost of the cheapest 2EC subgraph will satisfy: 2/3 ∗χ(G−e) ∗ (cost) ≥ cost of

cheapest 2EC. But 2/3 ∗ χ(G) ∗ (cost) = 4/3 ∗ ZLP (1/2) by our construction of G.

So 2/3 ∗ χ(G−e) ∗ (cost) = 4/3 ∗ZLP (1/2) − 4/3 ∗ ce giving us a stronger statement

that in Theorem 3.1.2.

We now prove Theorem 3.1.3 by induction.

Proof. G = (V, E) is a 4-edge connected, 4-regular graph. We prove the theorem

by induction on the number of vertices in G.

Base Case: |V | = 2.

v u

e

a

b

c

Figure 3.1: A 4-regular 4EC graph on 2 vertices.

Let e by one edge uv. Let a, b, c by the other 3 edges as seen in figure 3.1.

Now we show 2/3 ∗ χG−e =
∑

i λiχ
Hi.

a

b

b

c

v u v u

H H H1 2 3

a

c

v u

Figure 3.2: Decomposition into three 2EC subgraphs.

Then H1, H2, H3 are all 2EC subgraphs of G as seen in figure 3.2. Let

λ1 = λ2 = λ3 = 1/3. Then 1/3χH1 + 1/3χH2 + 1/3χH3 implies that xab =
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xab = xbc = 2/3. Therefore, 2/3 ∗ χG−e =
∑

i λiχ
Hi and our base case holds.

Inductive Hypothesis: Suppose the statement hold true for |V | = k.

Inductive Step: Show the statement to be true for |V | = k + 1.

Let e = uv be the edge specified in the Theorem statement. Since G is

4-regular, then v has 4 neighbours which may not all be distinct.

The configurations seen in figure 3.3 can occur.

e e e e

u u u u

v v v v

Figure 3.3: Unlabeled 4 distinct cases that can occur.

In particular, note that the there can not be 3 edges between vertices v and u,

since the cut δ({uv}) is a cut of size 2 as seen in figure 3.4. This can not occur,

since G is 4EC and thus any cut should be of size at least 4.

v u

Figure 3.4: Cut of size 2 if there exits 3 edges between two vertices.

We apply the Splitting Off Theorem twice to split off all the neighbours of

v. Label the neighbours of v as u, x, y, z. Without loss of generality we label the

two new edges obtained through the splitting off operation as ux and yz. If u is
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not distinct then we let u = z and similarly, if x is not a distinct neighbour of v

then let x = y.

So we have the situation seen in figure 3.5.

e e e e

u u u=z u=zx y z z x y x=yx=y

v v v v

Figure 3.5: Labeled 4 cases that can occur.

Then G1 = G− v + ux + yz is a 4-regular, 4EC graph. Let e1 = ux in G1. G1

has one less vertex than G thus by the inductive hypothesis:

2/3 ∗ χG1−e1 =
∑

i

λiχ
Hi . (3.2)

Define

H1
i = Hi − yz + yv + zv for yz ∈ Hi

H2
i = Hi + xv + xv for yz /∈ Hi

Where 2 copies of the same edge {xv} are taken in H2
i .

Each edge has weight of 2/3 on the LHS of equation 3.2 thus on the RHS of

equation 3.2 we have
∑

λi = 2/3 over subgraphs Hi that contain the edge {yz}.
Label such sum as λyz. Then 1 − λyz = 1/3.

We claim that:

2/3 ∗ χG−e =
∑

i

λiχ
H1

i +
∑

i

µiχ
H2

i (3.3)

To see this, note that the only edges that appear in G that do not appear in

G1 are {yv}, {zv} and {xv}. So, for all the other edges the equation 3.3 holds by

the inductive hypothesis. Now, since λyz = 2/3 then
∑

i λi over subgraphs H1
i

is also equal to 2/3. Thus the total weight of edges {yv}, {zv} is 2/3. Similarly,

since 1− λyz = 1/3, then
∑

i µi over subgraphs H2
i is 1/3. We take two copies of

the edge {xv} for all such H2
i and thus the total weight of edge {xv} is 2/3.

The result is show to hold by the principles of mathematical induction.
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3.2 Lower Bound

We wish to find the exact integrality gap for 2EC problem on small graphs with

a fixed number of vertices n.

We work with a complete graph Kn = (V, E).

Note that for n ≤ 5 the ratio is α = 1, since the integrality ratio for metric

TSP is know to be 1 for n ≤ 5 [12].

We wish to solve the following quadratic program. Not that we have two

variables per edge; informally c is a cost vector that gives the worst-case integral

ratio, and x is the optimum solution to the 2EC-LP for that c.

min
∑

e∈E cexe

s.t. x(δ(S)) ≥ 2 ∀ ∅ � S � V (1)

x(δ(v)) = 2 ∀ v ∈ V (2)

xe ≥ 0 ∀ e ∈ E (3)

c(H) ≥ 1 ∀ 2EC subgraphs H (4)

cik + ckj ≥ cij ∀i, j, k ∈ V (5)

ce ≥ 0 ∀e ∈ E (6)

(QP)

Note that there are an exponential number of constraints of type (1) and (4)

For a particular 2EC-IP we can divide all the edge costs by the optimum value

ZIP and the new costs will still satisfy all the cost constraints, which are con-

straints (4), (5) and (6). The new costs result in a new value of ZIP = 1. Thus,

to find the integrality ratio it is sufficient to only consider metric cost function c

for which the ZIP = 1 so α = 1/ZLP .

To solve the QP-LP we do the following. Let X = {x(1), x(2), . . . , x(p)} be the

complete list of all the vertices of the 2EC-LP polytope. From polyhedral theory,

for every cost function c : E → R+ there exists at least one vertex x∗ ∈ X such

that c is minimized over 2EC-LP polytope at x∗. (i.e such that ZIP = cx∗).

We can now break up our set of cost functions into different not disjoint sets.

For each vector x(i) we solve:
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ZIPi
= min

∑
e∈E cx(i)

s.t. c(H) ≥ 1 ∀ 2EC subgraphs H

cik + ckj ≥ cij ∀i, j, k ∈ V

ce ≥ 0 ∀e ∈ E

(Ci-LP)

Then 2EC integrality ratio is α = 1/mini{ZLPi
}.

To implement this strategy as a computer algorithm we do the following steps.

Step 1: Generate the set X - all vertices in the 2EC-LP polytope. We do this using

PORTA [15]. While PORTA is able to produce all the points in the 2EC-LP

polytope for n = 6, it fails to do so for values of n ≥ 7.

Step 2: Reduce the set of vertices X by removing all isomorphic support graphs

(where xe > 0). We do this using a package called nauty [25]. Modifications

have been made to allow nauty to work with weighted graphs, even though

it does not do this by default.

Step 3: Solve the systems Ci-LP to get a valid cost vector. We do this using CPLEX.

Step 4: Find the minimum value of ZLPi
from step 3 to get our desired ratio α.

The above method was used to obtain a ratio of 10/9 for graph seen in figure

3.6 on 6 vertices.

x values
x=1 for solid edges
x=1/2 for dashed edges

c values
c=0.1 for solid edges
c=0.2 for dashed edges 

Figure 3.6: Example on 6 vertices.
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Moreover, using some computer results from Boyd and Labonte [12] we got

an integrality ratio of 7/6 for the graph on 9 vertices seen in figure 3.7.

x values c values
x=1 for solid edges
x=1/2 for dashed edges

c=1/14 for solid edges
c=1/7 for dashed edges 

Figure 3.7: Example of 9 vertices.

Further works needs to be done to see if the same pattern of graphs will lead

to a lower ratio.
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