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Abstract

Proper forecasting of uncertain parameters of the problems is one important
application of convex optimization. Currently, there are many successful approaches
in the theory and algorithms to solve convex programming problems.

One of the most popular applications is in Financial Markets. We present some
fundamental SDP representation techniques for moment problems and introduce
portfolio optimization problems. We also revise one portfolio optimization model
and use numerical results to show the advantage of revised model.
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Chapter 1

Introduction

One of the most important ingredients of successful applications of optimization is
the proper forecasting of uncertain parameters of the problem. In many cases, we
deal with uncertainties in data and parameters by estimating high order expected
behavior. Indeed, in most cases when there is significant uncertainty, the expected
value of a parameter is a poor way to represent the real problem as a mathematical,
deterministic optimization problem.

Research in optimization under uncertainty has been flourishing during the last
two decades. The main approaches are covered under the terms: Stochastic Pro-
gramming and Robust Optimization.

Applications in the area of optimization under uncertainty have also been in-
creasing in number as well as in practical impact. One of the most popular and
visible applications is in Financial Markets.

This essay is geared towards financial applications. In such applications, many
restrictions on the variables based on variance data can be expressed as variable
vectors lying in well-behaved convex cones. Many other restrictions based on higher
order moments can be expressed as certain scalar polynomials being nonnegative
for every choice of its argument. Such positivity requirements can be equivalently
expressed as certain variable matrix being symmetric positive definite.

In this essay, we first review these fundamental representation techniques (see
Section 1.1 and Chapter 2). All the convex cones used in our formulations are uni-
fied under a well-behaved set of convex cones called symmetric cones (see the next
section for a definition). We then turn to the financial applications and introduce
portfolio optimization (see Section 1.2 and 2.2).
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In Chapter 3, we focus on the portfolio optimization model proposed by Lobo
et al. [7]. We modify and improve their model in two ways:

1. We allow for cash infusions in each planning period.

2. We allow for multiple periods.

In Chapter 4, we compare the performance of Lobo et al. model and our mod-
ifications using real data and computational experiments.

1.1 Symmetric Cone Optimization

Convex optimization problems, the problems of minimizing a convex function over
a convex set, make up a very large and relatively well-behaved class of optimization
problems.

Currently, many of the most successful approaches in the theory and algorithms
treat convex optimization problems in conic form. A popular name for such form
is cone programming problems.

Cone programming problem is the problem of optimizing (minimizing or maxi-
mizing) a linear function of finitely many real variables subject to the vector of real
variables lying in the intersection of a prescribed affine subspace and a convex cone.
Below, we introduce some notation and describe the cone programming problems
in terms of the notation.

Given A : Rn 7→ Rm a linear operator that is surjective, b ∈ Rm and c ∈ Rn,
consider the cone programming problem

(P ) inf 〈c, x〉
A(x) = b,

x ∈ K,

where K ⊂ Rn is a closed convex cone.

Note that K ⊂ Rn is a cone if ∀x ∈ K and ∀λ > 0, λx ∈ K.

Under very mild assumptions, all convex optimization problems can be formu-
lated as cone programming problems, see for instance [16].

Any linear operator A : Rn 7→ Rm can be represented by m elements of Rn.
That is, there exist A1,A2, . . . ,Am ∈ Rn such that:

[A(x)]i = 〈Ai, x〉, ∀i ∈ {1, 2, . . . , m}.
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Then A being surjective is equivalent to {A1,A2, . . . ,Am} being linearly indepen-
dent. Indeed the latter condition can be easily checked.

We denote by Sn the space of n × n symmetric matrices over the reals. Sn
+

denotes the cone of symmetric, positive semidefinite matrices in Sn. In the above
optimization problem, setting

K := Sn1
+ ⊕ Sn2

+ ⊕ · · · ⊕ Snr
+

yields a Semidefinite Programming(SDP) problem, where ⊕ denotes the direct sum
of two vector spaces V and W. The direct sum V ⊕W is the set of vectors (v, w),
v ∈ V and w ∈ W , with the operations

(v, w) + (v′, w′) = (v + v′, w + w′), c(v, w) = (cv, cw).

Many financial applications can be treated via second order cones. An (n + 1)-
dimensional second order cone is defined as

SOCn :=

{(
x0

x

)
∈ R⊕ Rn : x0 ≥ ‖x‖2

}
.

We also call the cone A(SOCn) a second order cone, for every nonsingular linear
transformation A : Rn+1 7→ Rn+1. For example the cone

cl

{(
x0

x

)
∈ R⊕ Rn : x0x1 > x2

2 + x2
3 + · · ·+ x2

n, x0 > 0

}

is equal to the image of SOCn under such nonsingular linear transformation.

If we use
K := SOCn1 ⊕ SOCn2 ⊕ · · · ⊕ SOCnk ,

then we have a Second Order Cone Programming (SOCP) problem.

Note that every cross section of SOCn with x0 := α > 0 gives an Euclidean
Ball in Rn. This cone is also called the ice-cream cone, light cone or Lorentz cone.

The cone K ⊆ Rn is defined to be pointed if K
⋂

(−K) = {0}, which is equiva-
lent to say that K contains no lines.

Given K ⊆ Rn, the dual cone of K is

K∗ := {s ∈ R : 〈x, s〉 ≥ 0,∀x ∈ K}.

If cone K ⊆ Rn has nonempty interior:
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• K is homogeneous if for every pair x, y ∈ int(K) (denoting the interior of K),
there exists a nonsingular and linear transformation T such that , T (K) = K
and T (y) = x.

• K is self-dual if there exists an inner product under which, K = K∗.

• K is symmetric if it is homogeneous and self-dual.

Now, we list some fundamental results on some of the elementary properties of
convex cones.

Theorem 1.1.1. Let K ⊆ Rn. If K is a pointed, closed convex cone with nonempty
interior, then so is K∗.

Theorem 1.1.2. Let K ⊆ Rn. Then K is a closed convex cone iff K∗∗ = K.

Corollary 1.1.1. Let K ⊆ Rn. Then K is a pointed, closed convex cone with
nonempty interior iff so is K∗.

Theorem 1.1.3. Let K ⊆ Rn be a closed convex cone. Then

int(K) = {x ∈ K : 〈x, s〉 > 0, ∀s ∈ K∗\{0}}.

Both Sn
+ and the SOCn are pointed, closed, convex cones with nonempty inte-

rior. Moreover, they are homogeneous and self-dual; hence, they are symmetric.

For the rest of the essay, the main convex cones we deal with will be Sn
+ and

SOCn. Most of the models will only use second order cones. However, if we want
to include more complicated constraints in our model, such as simple polynomial
inequalities stipulating that a scalar polynomial be nonnegative, then we would
utilize the results of Chapter 2 and the cone of symmetric positive definite matrices.

1.2 Portfolio Optimization

In his seminal paper [11], Markowitz introduced mathematical modelling techniques
to solve the portfolio selection problem for a large private investor or an institutional
investor. Markowitz’s work provided a starting point for most of the work in the
area of portfolio optimization.
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In the book [10], Markowitz analyzed the Mean-Variance (M-V) portfolio se-
lection problem. The problem is modelled as a parametric quadratic programming
problem with general linear inequality constraints:

minimize f(x) := −tµT x +
1

2
xT V x

subject to Ax ≤ b

c1 ≤ x ≤ c2,

where µ is an n-vector of expected returns, V is an n × n covariance matrix, x is
an n-vector of amount of asset holdings, A is an m × n matrix, b is an m-vector,
t is a parameter (usually t ≥ 0) and c1, c2 ∈ Rn are bounds on the holdings. Note
that the objective function is quadratic and the constraints are linear. The function
f(x) is called the utility function in [10].

An obvious drawback of the basic Markowitz model is that it needs the mean
µ and variance V computed (estimated), and then uses µ, V in a deterministic
quadratic programming setting. During the last decade, a new area called robust
optimization provided a very intriguing approach to uncertainty in optimization
problems [1].

Instead of using a single estimate of an uncertain part of the data (or parameters)
in the Mean-Variance(M-V) portfolio selection model, robust optimization approach
describes a set of possible values for that uncertain data (or parameters), which is
called the uncertainty region. Then the robust portfolio selection problems try to
find the optimal strategy under the assumption that the worst possible scenario in
the uncertainty region can happen [9].

Many financial investment companies use the notion of market driving factors in
their forecasting techniques. They choose a small set of indicators (order of 10 or at
most 20) that reflect the basic tendencies of the financial market. Below, vector f
in the Factor analysis model is the vector representing such market driving factors.

Define the return
r := µ + V T f + ε,

where µ ∈ Rn is the vector of expected returns, f ∼ ℵ(0, F ) ∈ Rm is the vector
of returns of the factors that drive the market, V ∈ Rm×n is the matrix of factor
loadings of the n assets and ε ∼ ℵ(0, D) is the vector of residual returns, where
x ∼ ℵ(a,A) denotes that x is a multivariate normal random variable with mean
vector a and covariance matrix A. Then

r ∼ ℵ(µ, V T FV + D).
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Goldfarb and Iyengar [9] noted that the eigenvalues of the residual covariance
matrix D are typically much smaller than those of the covariance matrix V T FV
implied by the factors. Thus, the covariance matrix of return r is usually dominated
by V T FV . In some cases, the lower-rank property of F and V can reduce the
complexity of calculation for the covariance matrix.

Let the portfolio of the investor be represented by φ ∈ Rn, where φi is the
amount invested for asset i. The return rφ for the portfolio can be given by

rφ = rT φ = µT φ + V T fφ + εT φ ∼ ℵ(µT φ, φT (V T FV + D)φ).

Define the uncertainty regions as:

Sd := {D : D = Diag(d), di ∈ [di, d̄i], i = 1, . . . , n}
Sv := {V : V = V0 + W, ‖Wi‖g ≤ ρi, i = 1, . . . , n}
Sm := {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, . . . , n},

where Wi is the ith column of W and ‖w‖g =
√

wT Gw is the one kind of norm for
w with respect to a symmetric, positive definite matrix G.

Mathematically, Goldfarb and Iyengar in [9] expressed the robust portfolio se-
lection model that minimizes the variance V ar[rφ] among all φ ∈ Rn that have
expected return E[rφ] at least α as:

minimize max{V ∈Sv ,D∈Sd} V ar[rφ]

subject to min{µ∈Sm} E[rφ] ≥ α

eT φ = 1.

Another closely related model for the investor to maximize the expected return
is:

maximize min{µ∈Sm} E[rφ]

subject to max{V ∈Sv ,D∈Sd} V ar[rφ] ≤ λ

eT φ = 1.

Assume that the uncertainty sets Sv and Sm are finite sets[9], i.e.

Sv = {V1, . . . , Vs} Sm = {µ1, . . . , µr}.
By series of modelling theorems and techniques, the model can be reformulated as
an instance of SOCP.
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The portfolio selection model we talk in Chapter 3 is arising from the portfolio
optimization problems with fixed transactions costs, which are cast as convex op-
timization problems. While convex portfolio optimization problems include those
with linear transactions costs, margin and diversification constraints, and limits on
variance and on shortfall risk.

The model can be view as an extension of the basic Markowitz model. Instead
of defining objective function with variance, we treat the variance as a second
order cone constraint. We also express shortfall risk, which is equal to VaR in real
applications, in constraints.

We do not employ the robust portfolio selection approach in this essay. However,
as we point out in Chapter 3, our formulations can be extended to the robust
optimization model by introducing uncertainty regions.

The recent theoretical and computational developments in SDP and SOCP,
especially interior-point methods, provide us with fast algorithms, good modelling
techniques and robust software for many nonlinear convex optimization problems.
Our model is numerically solvable under these advances.
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Chapter 2

SDP Representation of Positive
Polynomials for Moment problems

Moment problems, involving the first k order moment of random variables, have
proven to be applicable to different areas such as computational finance, opera-
tions research in general, and stochastic optimization. Employing duality theory
and other representation tools, SDP can be used to represent the moment-type
optimization problems. In this chapter, we will show the key connections between
moment problems, positive polynomials and SDP representations. In Section 2.1,
some fundamental theorems and results are outlined. In Section 2.2, some examples
of the financial applications are introduced.

2.1 Mathematical Foundations of SDP Represen-

tation

Nesterov [12] showed that the set of coefficients of a degree n univariate polyno-
mial, which generate polynomials with non-negative values for every choice of the
argument can be represented as an intersection of the positive semidefinite cone
with an affine space. Here, we outline this result and some related theory.

Pn denotes the (n + 1)−dimensional vector space. p ∈ Pn is written as

p(t) =
n∑

k=0

pkt
k.
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Defining
τn := (1, t, t2, . . . , tn)T ∈ Pn,

we have p(t) = 〈p, τn〉.
The cone of non-negative polynomials is the cone of all coefficient vectors p for

which the underlying polynomial is non-negative for all values of t. It is easy to
show that such a polynomial must be of even degree. That is

K2n :=
{
p ∈ P2n : p(t) ≥ 0, for all t ∈ R}

.

Theorem 2.1.1. [12]

(i) A polynomial of odd degree cannot be nonnegative on R. That is, if p(t) ≥ 0,
∀t ∈ R, then the degree of p(t) is even.

(ii) A polynomial is nonnegative on the whole of R iff the polynomial can be ex-
pressed as a sum of squares of polynomials.

Proof. We use ι :=
√−1

(i) We give two proofs for this part:

(a) Suppose p(t) has odd degree, deg(p) = 2k + 1 for some k ∈ Z+.

The coefficient of t2k+1 is nonzero by definition, and denote it by p2k+1.

If p2k+1 > 0, then p2k+1t
2k+1 < 0 for all sufficient small t(t → −∞).

If p2k+1 < 0, then p2k+1t
2k+1 < 0 for all sufficient large t(t → +∞).

Therefore, p(t) is not nonnegative on the whole R when p2k+1t
2k+1 dom-

inates p(t).

(b) Assume p(t) ≥ 0 for all t ∈ R. Let λi be its real roots with multiplicity
mi, for i ∈ {1, . . . , r}, and aj + ιbj, aj − ιbj be its complex roots for
j ∈ {1, . . . , h}.
Then

p(t) = pn

r∏
i=1

(t− λi)
mi

h∏
j=1

((t− aj)
2 + b2

j).

If mi is odd, the sign of (t − λi)
mi is different for t ∈ (λi, λi + ξ) and

t ∈ (λi − ξ, λi), where ξ > 0 is sufficiency small. The sign of p(t) is
also different when the sign of the other items remains unchanged. This
is a contradiction to p(t) ≥ 0 for all t ∈ R. So mi must be even for
i ∈ {1, . . . , r}.
The degree of p(t) is (m1 + m2 + . . . + mr) + 2h must also be even.
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(ii) If p(t) can be expressed as a sum of squares of polynomials, then clearly
p(t) ≥ 0 for all t ∈ R.

If p(t) ≥ 0 for all t ∈ R, we use the same notation of roots of p(t) as above,
and let 2k denote the degree of p. Then

p(t) = p2k

r∏
i=1

(t− λi)
mi

h∏
j=1

((t− aj)
2 + b2

j)

= p2k[(t− λ1)
m1/2(t− λ2)

m2/2 · · · (t− a1) · · · (t− ah)]
2

+p2k[(t− λ1)
m1/2 · · · (t− ah−1)bh]

2

+p2k[(t− λ1)
m1/2 · · · (t− ah−2)bh−1bh]

2

+ · · ·

=
k∑

i=0

(
k∑

j=0

cijt
j)2.

Where cij is the coefficient for xj in the ith polynomial of the sum. Then p(t)
can be expressed as a sum of squares of polynomials.

¥

As it will become clearer, it seems more natural to treat such cones as squares
of some other object. There are many versions of this. For instance, we may be
interested only in non-negative values of t or only in t ∈ [0, 1], etc.

Let Ek denote the kth (n + 1)× (n + 1) cross diagonal matrix:

E0 :=




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 , E1 :=




0 1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




,

E2 :=




0 0 1 0 . . . 0
0 1 0 0 . . . 0
1 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0




, . . . , E2n :=




0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1


 .
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Theorem 2.1.2. [12]

K2n =
{
p ∈ P2n : pk = 〈X,Ek〉, k ∈ {0, 1, . . . , 2n}, X º 0

}
.

Proof.

Let T := {p ∈ P2n : pk = 〈X,Ek〉, k ∈ {0, 1, . . . , 2n}, X º 0}, we will prove
that T = K2n.

(i) For all p ∈ T , X := (xij), pk = 〈X,Ek〉 =
∑

i+j=k+2 xij,

p(t) =
2n∑

k=0

pkt
k =

2n∑

k=0

∑

i+j=k+2

xijt
k

= τT
2nXτ2n.

As X º 0, we have τT
2nXτ2n ≥ 0 for ∀t ∈ R.

Hence, p(t) ≥ 0 for ∀t ∈ R. Therefore, T ⊆ K2n.

(ii) Using the same notation as in the proof of the Theorem 2.1.1, for ∀p ∈ K2n,
p(t) =

∑n
i=0(

∑n
j=0 cijt

j)2.

Let C be the (n + 1)× (n + 1) matrix whose (ij)th entry is cij.

Define X := CT C, note that
∑n

j=0 cijt
j = (Cτn)i, we can obtain

p(t) = τT
n CT Cτn = τT

n Xτn

=
2n∑

k=0

(
∑

i+j=k+2

xij)t
k.

Thus, pk =
∑

i+j=k+2 xij = 〈X,Ek〉, and X = CT C º 0.

So p ∈ T . Therefore, K2n ⊆ T .

Combining (i) and (ii), we conclude that K2n = T .

¥

Lemma 2.1.1. (K2n)∗ = {s ∈ P2n :
∑2n

k=0 skEk º 0}.
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Proof.

Let M := {s ∈ P2n :
∑2n

k=0 skEk º 0}.
By definition, (K2n)∗ = {s ∈ P2n : 〈p, s〉 ≥ 0,∀p ∈ K2n}.

(i) For ∀s ∈ M, ∀p ∈ K2n,
∑2n

k=0 skEk º 0, 〈p, s〉 =
∑2n

k=0 pksk.

By Theorem 2.1.2, pk = 〈X,Ek〉, X º 0. Thus,

〈p, s〉 =
2n∑

k=0

〈X,Ek〉sk =
2n∑

k=0

〈X, skEk〉 = 〈X,
2n∑

k=0

skEk〉 ≥ 0,

since X º 0, and
∑2n

k=0 skEk º 0. Therefore s ∈ (K2n)∗ and M ⊆ (K2n)∗.

(ii) For ∀s ∈ (K2n)∗,∀p ∈ K2n, 〈p, s〉 ≥ 0. Let ∀a ∈ Rn+1, define X := aaT º 0.
Let pk = 〈Ek, X〉. Therefore, p ∈ K2n by Theorem 2.1.2.

aT (
2n∑

k=0

skEk)a =
2n∑

k=0

ska
T Eka =

2n∑

k=0

sktrace(aT Eka)

=
2n∑

k=0

sk〈Ek, aaT 〉 =
2n∑

k=0

skpk

= 〈p, s〉 ≥ 0.

Note that the equation above is true for ∀a ∈ Rn+1, thus
∑2n

k=0 skEk º 0,
implying s ∈ M . Hence (K2n)∗ ⊆ M .

Therefore, (K2n)∗ = M = {s ∈ P2n :
∑2n

k=0 skEk º 0}.

¥

Lemma 2.1.2. int(K2n) = {p ∈ P2n : p2n > 0, p(t) > 0,∀t ∈ R}.

Proof.

By Theorem 1.1.3, int(K2n) = {p ∈ K2n, 〈p, s〉 > 0, ∀s ∈ K∗
2n\{0}}.
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Let p ∈ int(K2n). For s̄ := (0, 0, . . . , 0, 1)T ∈ P2n,

2n∑

k=0

skEk = E2n º 0 =⇒ s̄ ∈ K∗
2n\{0}

=⇒ 〈p, s̄〉 = p2n > 0.

Select ŝ := (1, t, t2, . . . , t2n)T ∈ P2n,

p̃T (
2n∑

k=0

skEk)p̃ =
2n∑

k=0

skp̃
T Ekp̃ = p̃(t)2 ≥ 0,

is true for ∀p̃ ∈ P2n.

Then
∑2n

k=0 ŝkEk º 0, ŝ ∈ K∗
2n\{0}, therefore p(t) = 〈p, ŝ〉 > 0, for ∀t ∈ R. We

proved,
int(K2n) ⊆ {p ∈ P2n : p2n > 0, p(t) > 0,∀t ∈ R}.

In order to prove the converse, let p ∈ P2n such that p2n > 0, p(t) > 0,∀t ∈ R.
We will prove that ∃ε̄ > 0, for every h ∈ P2n such that ‖ h ‖= 1 and ∀t ∈ R,

(p± εh)(t) > 0, ∀ε ∈ [0, ε̄].

It suffices to prove that for every i ∈ {0, 1, 2, . . . , 2n} and ∀t ∈ R,

(p± εei)(t) > 0,

since 1, t, t2, . . . , t2n make up a basis for the polynomials of degree at most 2n. Since
p(t) > 0, ∀t ∈ R, there exists ε > 0 such that p(t) ≥ ε ,∀t ∈ R. Moreover, this
implies that ∀ε ∈ [0, ε) and ∀t ∈ R,

(p± εe0)(t) = p(t)± ε > 0.

Define p̃ ∈ P2n, such that p̃(t) = p2n + p2n−1t + . . . + p0t
2n for t ∈ R, then

p(t) = t2np̃(
1

t
) = t2n(p2n + p2n−1t

−1 + . . . + p0t
−2n). (2.1)

Since p(t) > 0,∀t ∈ R, we have p̃(1
t
) > 0 for ∀t ∈ R\{0}. Thus p̃(t) > 0,∀t ∈ R.

Therefore, there exists ε0 > 0 such that p̃(t) ≥ ε0,∀t ∈ R. Using (2.1) we conclude
that:

p(t) ≥ εt2n, ∀ε ∈ [0, ε0],∀t ∈ R.

14



Therefore, for ∀t ∈ R, ∀ε ∈ [0, ε0),

(p± εe2n)(t) = p(t)± εt2n > 0.

Let ε̄ := min{ε0, ε}, then ∀ε ∈ [0, ε̄), ∀i ∈ {1, 2, . . . , 2n−1}, for large t, |εti| < εt2n,
then,

(p± εei)(t) > p(t)− εt2n > 0.

If |t| < 1, (p± εei)(t) > p(t)− ε ≥ ε− ε > 0.

Hence, the converse is satisfied. Then int(K2n) = {p ∈ P2n : p2n > 0, p(t) >
0,∀t ∈ R}.

¥

Theorem 2.1.3. K2n and K∗
2n are pointed, closed, convex cones with nonempty

interiors.

Proof.

Note that by Lemma 2.1.2, int(K2n) is not empty. Since

K2n = {p ∈ P2n : p(t) = 〈p, τ2n〉 ≥ 0,∀τ2n ∈ P2n}

which is the intersection of infinitely many closed half spaces, K2n is closed and
convex.

K2n is also pointed, otherwise we can find a line such that

〈p + αd, τ2n〉 ≥ 0, ∀τ2n ∈ P2n =⇒ 〈d, τ2n〉 = 0, ∀τ2n ∈ P2n

=⇒ t = 0,

which is a contradiction to ∀t ∈ R.

Applying Corollary 1.1.1, we obtain that K∗
2n is also a pointed, closed, convex

cone with nonempty interior.

¥

Here, we give a direct argument proving that K∗
2n has nonempty interior.

Lemma 2.1.3. There exists s̄ ∈ P2n such that
∑2n

k=0 s̄kEk Â 0.

15



Proof. Let t0 < t1 < . . . < tn ∈ R. Define

s̄ :=




1 1 . . . 1
t0 t1 . . . tn
t20 t21 . . . t2n
...

...
. . .

...
t2n
0 t2n

1 . . . t2n
n




e ∈ P2n.

Take ∀p ∈ P2n 6= 0,

pT (
2n∑

k=0

skEk)p =
2n∑

k=0

skp
T Ekp =

n∑
i=0

p(ti)
2 > 0,

because such a polynomial p can have at most n real roots unless p ≡ 0. Hence,
s̄ ∈ int(K∗

2n), K∗
2n has nonempty interior and

∑2n
k=0 skEk Â 0.

¥

Theorem 2.1.4. If p ∈ int(K2n) then the set

{X º 0 : 〈X,Ek〉 = pk, for all k ∈ {0, 1, . . . , 2n}}

is bounded and there exists X Â 0 such that 〈X,Ek〉 = pk for all k ∈ {0, 1, . . . , 2n}.

Proof.

Fix p ∈ int(K2n), and let X̄ ∈ {X º 0 : 〈X,Ek〉 = pk, for all k ∈ {0, 1, . . . , 2n}}.
Select s̄ ∈ int(K∗

2n), and define S̄ :=
∑2n

k=0 s̄kEk > 0,

〈X̄, S̄〉 = 〈X̄,
2n∑

k=0

s̄kEk〉 =
2n∑

k=0

s̄kpk.

Since p and s̄ are fixed,
∑2n

k=0 s̄kpk = constant > 0. Then for every X̄ as above, it
satisfies 〈X̄, S̄〉 = constant. Note that

{
X º 0 : 〈X, S̄〉 =

2n∑

k=0

s̄kpk = constant

}

is compact. Therefore, {X º 0 : 〈X,Ek〉 = pk, for all k ∈ {0, 1, . . . , 2n}} is bounded
for every p ∈ int(K2n).
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By Lemma 2.1.1, (K2n)∗ = {s ∈ P2n :
∑2n

k=0 skEk ∈ Sn
+}. By Lemma 2.1.3,

∃s̄ ∈ K∗
2n such that

∑2n
k=0 skEk ∈ Sn

++. Besides, by Theorem 2.1.3, K2n and K∗
2n

are pointed, closed, convex cones with nonempty interiors. Therefore by Theorem
2.1.2,

K2n = K∗∗
2n = {A(X) : X ∈ Sn

+},
where A : Sn → R2n+1 such that [A(X)]i = 〈Ei, X〉, ∀i ∈ {0, 1, . . . , 2n}. Then,

K∗
2n = {s : A∗(s) ∈ Sn

+}.

(A∗ denotes the adjoint of A, such that

〈A∗(s), X〉 = 〈s,A(X)〉, ∀X ∈ Sn, s ∈ R2n+1).

By standard duality theory, there exists X̄ ∈ Sn
++ such that A(X̄) ∈ K2n. Then

there exists X̂ ∈ Sn
+ such that A(X̂) ∈ int(K2n).

¥

Polynomials that are non-negative on the half-line, R+, or on an interval [0, 1]
can be treated similarly.

Trigonometric polynomials

p(t) =
n∑

k=0

pk (cos t + ι sin t) ,

(where ι :=
√−1 as before) can also be treated similarly.

A central fact related to the above theorems (and their proofs) is that a poly-
nomial is nonnegative on the whole of R iff the polynomial can be expressed as a
sum of squares of polynomials. These types of results go back at least a hundred
years.

It has been well known that a polynomial p, with coefficients from R, is nonneg-
ative on the whole real line iff there exist polynomials p1 and p2 with real coefficients
such that

p(t) = [p1(t)]
2 + [p2(t)]

2 .

If we only require that p(t) ≥ 0, for all t ∈ R+, then there exist polynomials
p1, p2, p3, and p4 such that

p(t) = [p1(t)]
2 + [p2(t)]

2 + t
(
[p3(t)]

2 + [p4(t)]
2) .
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A related, interesting question goes back to Hermite (in 1894). He asked whether
every polynomial p of degree at most n, with the property

p(t) > 0, ∀t ∈ (−1, 1),

can be expressed as

p(t) =
∑

i,j≥0: i+j≤n

aij(1− t)i(1 + t)j,

where aij ≥ 0. It was quickly answered “no.” However, Hausdorff (in 1921) proved
that if the restriction i + j ≤ n on the maximum degree of the representing poly-
nomial is relaxed then the answer is “yes.” That is, there exist aij ≥ 0, for all i, j
such that

p(t) =
∑
i,j≥0

aij(1− t)i(1 + t)j.

2.2 Financial Applications

Bertsimas and Sethuraman in [2] discussed the application of SDP representation
in financial mathematics. Black-Scholes formula is a popular approach in pricing
derivatives under the assumption that the underlying asset follows a Geometric
Brownian Motion and there exists no arbitrage profit [4].

Let S be the price of the underlying asset. One typical kind of random walk
that S follows is Geometric Brownian Motion, which can be expressed as:

dS

S
= µdt + σφ

√
dt,

where µ is the drift rate, σ is the volatility, t is parameter of time and φ ∼ ℵ(0, 1).
Moreover, there are no arbitrage opportunities when all risk-free portfolios earn
the risk-free rate of return. By constructing a hedging portfolio that consists of
∂V
∂S

shares of an asset and −1 share of an European call option, the Black-Scholes
differential equation can be derived as:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂2V

∂S2
= rV,

where V is the price of the option and r is the risk-free interest rate.

The Black- Scholes formula was extremely influential in forming succeeful re-
search in the area, as well as in operation practice of the financial companies in
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the markets, see for instance [3][8]. As a result, many questions arose. Suppose we
do not assume the motion of the underlying asset, only some moments of the price
of the asset are given, such as expected price and variance. Can we get a reliable
value or bound for the price of derivatives using only no-arbitrage theory?

In order to apply the no-arbitrage theory, Cox and Ross in [5] showed that it
is equivalent to the existence of a risk-free probability measure π for the price of
the underlying asset. Under this measure, we can define and calculate moments of
asset price X. Based on the definition and properties of moments, we can formulate
the optimization model for financial problems. The model is solvable efficiently
together with the developments in algorithms for SDP, using the theorem of SDP
representation in Section 2.1 .

One example is to maximize the expected payoff of a European call option given
n moments (q1, q2, . . . , qn) for the price of the asset. Let q0=1, the model can be
expressed as:

maximize Eπ[max(0, X − k)] =

∫ ∞

0

max(0, t− k)π(t)dt

s.t. Eπ[X i] =

∫ ∞

0

tiπ(t)dt = qi, i = 0, 1, 2, . . . , n

π(t) ≥ 0,

where k is the strike price for the call option, X is the spot price for underlying
asset on maturity, and max(0, X − k) is the payoff for the call option.

The dual of the problem is:

minimize
n∑

i=0

yiqi

s.t.

n∑
i=0

yit
i ≥ max(0, X − k), ∀t ≥ 0.

Note that the constraints of dual problem can be expressed as cones of non-
negative polynomials, by Theorem 2.1.2 discussed before, the above optimization
problem can be formulated as an instance of SDP.

Financial application area is one important aspect for the use of SDP represen-
tation methods. We can also use those techniques talked in last section to efficiently
model many other problems, which involves non-negative polynomials.
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Chapter 3

Portfolio Selection Model

3.1 Model for Single Period

Considering an investment on different types of portfolio, we want to maximize the
expected return, taking transaction costs into account, and subject to several kinds
of constraints for feasibility.

The single-period portfolio selection model below was introduced by Lobo Fazel
and Boyd [7]. The current holdings in n assets are w := (w1, . . . , wn)T . The
amounts (in units of asset, not dollars) transacted in these assets are given by the
vector x := (x1, . . . , xn)T . After the transactions, the new holdings in the portfolio
is (w + x). Let φ(x) denote the sum of all transaction costs. The problem can be
expressed as [7]:

max āT (w + x)
s.t. pT x + φ(x) ≤ ξ

(w + x) ∈ S,

where ā is the vector of expected returns on each asset, p is the price for assets at
the beginning of the period, ξ is the cash amount invested in this period. Then pT x,
the investment needed for x, plus the transaction costs φ(x), must be less than or
equal to the budget ξ. S is the set of feasible portfolios. We will discuss a variety
of transaction cost functions and portfolio constraints later.

Assume that transaction costs can be separated, i.e. φ(x) is the sum of the
transaction cost associated with each asset, φ(x) =

∑n
i=1 φi(xi), where φi is the

transaction cost function for asset i.

There are several types of functions φi(xi) for real world applications, and we
will focus on the linear transaction cost functions, such as
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φi(xi) =

{
a+

i xi xi ≥ 0
−a−i xi xi ≤ 0

or φi(xi) =





0 xi = 0
β+

i + a+
i xi xi > 0

β−i − a−i xi xi < 0,

where a+
i , a−i are the different transaction costs associated with buying and selling

asset i, β+
i and β−i are fixed part of transaction costs.

Define x+
i = xi if xi ≥ 0, x−i = xi if xi ≤ 0 to express the amount of buying and

selling of the asset i, then xi = x+
i − x−i .

In practice, the transaction cost constraints are frequently not convex. However,
we can use convex relaxations to approximate them.

We can also add one asset wn+1 to express the holding of cash on hand and
xn+1 is the cash transacted during this period to involve the cash invested in this
period. Then the above problem becomes:

max āT (w + x)
s.t. pT x + φ(x) ≤ ξ + wn+1

(w + x) ∈ S,

where ān+1 = 1, pn+1 = 1 and φn+1(xn+1) = 0.

The feasible set of portfolios S can be discussed in different ways. We will
focus on the expression through convex constraints. With convexity, the underlying
optimization problems can be solved efficiently by special software based on interior-
point methods.

Diversification constraints limit the amount invested in each asset i. Suppose
we require that no more than a fraction γ of cash can be invested in r or less assets.
We want to avoid concentrating our investments into a small subset of assets to
hedge against investment risk. This constraint can be modelled as:

r∑
i=1

(p¯ x)[i] ≤ γpT x,

where p ¯ x :=




p1x1

p2x2
...

pnxn


, x[i] denotes the ith largest component of x, so x[1] ≥

x[2] ≥ . . . ≥ x[n].
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An alternative way to express the ith largest component is through introducing
new variable y ∈ Rn, t ∈ R.

γpT x ≥ rt + eT y
t + yi ≥ pixi , ∀ i ∈ {1, . . . , n}

yi ≥ 0 , ∀ i ∈ {1, . . . , n},
(3.1)

where e ∈ Rn denote the vector of all ones .

If the constraints (3.1) are satisfied, γpT x ≥ rt + eT y, and rt + eT y is greater
than the sum of any r items of t+yi. Combining with t+yi ≥ pixi, it is also greater
than or equal to any r items of p¯ x, so that γpT x is greater than or equal to the
sum of the r largest components of p ¯ x, which is what we need. In fact, we can
use LP duality Relation to show the equivalence of the two expression above.

Short selling constraints limit the maximum amount of short selling allowed on
asset i.

wi + xi ≥ −si , ∀ i ∈ {1, . . . , n},
for si ≥ 0.

Variance constraints are based upon the covariance matrix Σ (different notation
from before). The covariance matrix is calculated based on the historical data.

Note that the value of holdings at the end of the period is W = aT (w + x).
Assume the return vector a has a Gaussian distribution

a ∼ ℵ(ā, Σ).

The value of holdings is also a random vector

W = aT (w + x) ∼ ℵ(µ, σ2),

where µ = āT (w + x) and σ2 = E(W − EW )2 = (w + x)T Σ(w + x).

Note that ā and Σ can be estimated by the mean vector and the covariance
matrix of historical data [7]. If covariance terms are estimated independently and
the covariance matrix Σ̃ is not positive semidefinite, we can compute Σ ∈ Sn

+, such

that ‖Σ− Σ̃‖ is minimized, to estimate the covariance matrix.

One method is to computing the eigenvalue decomposition of Σ̃:

Σ̃ =
n∑

i=1

λiqiq
T
i ,
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where λi is an eigenvalue of Σ̃ and qi ∈ Rn is the corresponding eigenvector.

Σ :=
∑

i:λi≥0

λiqiq
T
i ∈ Sn

+,

is a positive semidefinite estimation of the variance matrix.

Denoting the maximum standard deviation of wealth W by a parameter σmax,
we express the variance constraints as:

(w + x)T Σ(w + x) ≤ σ2
max ⇐⇒‖ Σ1/2(w + x) ‖≤ σmax.

This constraint can be expressed as a second-order cone constraint
(

σmax

Σ1/2(w + x)

)
∈ SOCn.

Instead of the matrix square root Σ1/2 of Σ, we can also use the Cholesky factor
GT of Σ, where G is the unique lower triangular matrix such that GGT = Σ. The
speed of the calculation of the Cholesky decomposition in practice is much faster
than the calculation of the square root, even though they are both O(n3) in theory.
Moreover, the computation of the Cholesky factor seems more numerically stable
than the computation of the square root. Then the constraints can be expressed
as:

‖ GT (w + x) ‖≤ σmax ⇐⇒
(

σmax

GT (w + x)

)
∈ SOCn.

Short risk constraints. These constraints are dealing with VaR (value at risk)
for the wealth. We want to require that the wealth W at the end of the period be
larger than W low under a probability exceeding η:

Prob(W ≥ W low) ≥ η.

Note that W = aT (w + x) ∼ ℵ(µ, σ2), and let Φ(z) denote the cumulative distribu-
tion function of a zero mean, unit variance Gaussian variable.

Prob

(
W − µ

σ
≤ W low − µ

σ

)
≤ (1− η) =⇒ W low − µ

σ
≤ Φ−1(1− η) = −Φ−1(η)

=⇒ µ−W low ≥ Φ−1(η)σ.

Combining with µ = āT (w + x) and σ2 = (w + x)T Σ(w + x), we obtain

Φ−1(η) ‖ Σ1/2(w+x) ‖≤ āT (w+x)−W low ⇐⇒
(

(āT (w + x)−W low)/Φ−1(η)
Σ1/2(w + x)

)
∈ SOCn.
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Using Cholesky decomposition, the constraints can be expressed as

Φ−1(η) ‖ GT (w+x) ‖≤ āT (w+x)−W low ⇐⇒
(

(āT (w + x)−W low)/Φ−1(η)
GT (w + x)

)
∈ SOCn.

Note that the formula for variance constraints and short risk constraints are
similar, both of which involve the norm of Σ1/2(w + x). The short risk constraints
not only limit the variance of the wealth, but also has limited relationship between
the mean and variance of the wealth.

3.2 Portfolio Selection Model for Multi-Period

with Scheduled Cash Infusions

There are many situations in practice when we need to discuss the selection of
portfolios under a multi-period model, which means that we will deal with a long
time in the future, and divide it into several periods, such as 12 months in one
year. During each period, the investor might have scheduled income to be invested
on assets. Based upon the partial information about the future periods, we can
consider certain utility function for the whole planning horizon, such as expected
value. In each period, the assets transacted must be subject to the constraints on
the feasible portfolios.

Based upon the previous discussion about the single-period model, we can design
similar constraints for the new model. We will deal with the multi-period model
using m separate single periods, with different mean vectors and covariance matrices
for each period. We require that the amount of assets at the end of each period
also be feasible, thus satisfying the constraints of transaction costs, diversification,
etc.

We can define x̂ ∈ Rn×m = (x̂1, x̂2, . . . , x̂m) to be our variable for the new
model, where the vector x̂i denotes the amount of assets transacted during the ith
period. In order to express different amounts for buying and selling assets, we can
transform the variable space to R2mn, so that the vector x̂+

i corresponds to the
amount of assets bought in period i and the vector x̂−i corresponds to the amount
of asset sold in period i. The variable can be expressed as:
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x̂ =




x̂+
1

x̂+
2
...

x̂+
m

x̂−1
...

x̂−m




∈ R2mn ≥ 0.

Define xi := x̂+
i − x̂−i to be the transaction amount during the ith period. yj :=

(
∑j

i=1 xi) + w is the holdings of assets at the end of period j.

In order to express this relationship in matrix notation, we can define a transfer
matrix Tj such that yj = Tjx̂ + w, where Tj ∈ Rn×(2mn),

Tj :=




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

. . .

. . .

. . .

. . .

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1︸ ︷︷ ︸

j

0 . . .
0 . . .
...

. . .
0 . . .

−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1

−1 . . . 0
0 . . . 0
... . . .

...
0 . . . −1︸ ︷︷ ︸

j

0 . . .
0 . . .
...

. . .
0 . . .




.

Objective function. Our objective is to maximize the expected return at the end
of the whole planning horizon

maximize āT
mym ⇐⇒ āT

m(w +
∑m

i=1 xi),

where ām is the expected return on each asset for period m. w is the vector of
holdings in each asset at the beginning of the planning horizon. One method to
estimate ām is by calculating the mean vector of historical assets price for period
m.

Transaction cost constraints. Using the same notation as in Section 3.1

pT
j xj + φ(xj) ≤ ξj , ∀j ∈ {1, . . . , m},

where φ(xj) is under the same definition as in the single-period model, and we still
focus on the linear form of transaction costs. ξj is the scheduled investment for
the period j. Note that we can use real asset price p1 for the first period, and
p2, . . . , pm can be estimated by the mean historic prices for periods 2, . . . , m, which
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are ā1, . . . , ām−1. This selection of p can make sure that x1 is strictly feasible, and
x2, . . . , xm are feasible based upon estimation.

We can also add one asset to express the holding of cash on hand, denoted it
by ζi for i ∈ {1, . . . , m}. The above problem becomes:

pT
j xj + φ(xj) + ζj ≤ ξj + ζj−1 , ∀j ∈ {1, . . . , m},

Diversification constraints. Using the constraint discussed in the single-model:
∑r

i=1(pj ¯ xj)[i] ≤ γpT
j (xj) , ∀j ∈ {1, . . . , m}.

The alternative way to express the ith largest component through introducing
new variable Y ∈ Rn, t ∈ R can also be applied here, as in equations (3.1) on page
22.

Short selling constraints. s ∈ Rn
+ is the vector of lower bound (which could also

represent a credit line):

yj ≥ −s , ∀j ∈ {1, . . . , m}.

Variance constraints

‖ Σ
1/2
j (yj) ‖≤ (σmax)j , ∀j ∈ {1, . . . , m}.

Note that when we begin to forecast the future return, the variance matrix Σj

and mean vector āj are calculated from previous data for each period, and they
can only reflect partial information. Throughout the course of the horizon, we can
update them to include the new information and make the forecast more suitable to
the real case. Also we can use different variance matrix and mean for each period,
this kind of estimation can include the monthly or seasonal changes on the values
of the assets in the portfolio.

Short risk constraints. Based on the same assumption as the single-period
model, the short risk constraint can be represented as:

Φ−1(η) ‖ Σ
1/2
j (yj) ‖≤ āT

j (yj)−W low , ∀j ∈ {1, . . . , m}.

The previous discussion on the Cholesky decomposition of the variance matrix is
also applicable here. Moreover, the corresponding constraints are also representable
as second-order cone constraints.

We note that our models presented in this chapter can be extended using the ro-
bust optimization approach. The resulting optimization problems are still SOCPs.
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Chapter 4

Computational Results

4.1 Data Description

The historical data for experiment is obtained from database of CRSP (The Center
for Research in Security Prices), which creates and maintains premier historical
US databases for publicly traded stocks (NASDAQ, AMEX, NYSE), indices, bond,
and mutual fund securities. The database used is maintained and supported by
SOAR (School of Accountancy Research) at the University of Waterloo.

4.2 Software Package

We use Sedumi 1.05, an add-on toolbox for MATLAB. It implements the self-dual
embedding technique for optimization problems over self-dual and homogeneous
(which is equal to symmetric) cones[15]. As the special and common case of sym-
metric cone, SDP and SOCP can be efficiently solved by Sedumi.

The feature that Sedumi supports complex value data is also an attraction for
our choice to solve the portfolio selection models, because the estimation for the
variance matrix from real data may be indefinite. Therefore, when we use the
matrix V

1
2 , complex values can occur.

The version of MATLAB is 6.5 under the workstation of Windowsr XP and
UNIX. The machine for experiment is powered by processor Intel Pentiumr M 1.3
G, with 256MB DDR SDRAM. The server for UNIX is cpu101.math, which is a
general math faculty CPU server and the CPU is UltraSPARC IIe with speed 648
MHz and memory 1.5 GB.
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4.3 Experiments

We design series of experiments to examine the efficiency and calculation capacity
for the portfolio selection model.

First, we want to compare the optimal strategy obtained from single-period
model and multi-period model with scheduled cash infusion in each period of the
whole horizon. Second, we want to keep the size of the whole horizon and increase
the number of assets in the portfolio to find the maximum number of assets that
the model can solve. Third, we want to keep the number of assets in the portfolio
and increase the size of the whole horizon for forecast to find the maximum length
that the model can solve.

For stocks on 20 companies with Nasdaq company number between 60006000
and 60006200, such as RAYMOND, GRIFFON, KEY TRON, LIFELINE, MAIR
HOL, UNIFIRST, LAFARGE, BURLINGT, we selected the monthly average price
between Jan 1st, 1993 and Dec 31th, 2003. We use data from Jan 1st, 1993 and Dec
31th, 2002 to forecast the optimal investment strategy for the whole year of 2003
under scheduled cash flow for each month in 2003, and the objective is to maximize
the total profit earned at the end of 2003.

Note that calculating the average price matrix and covariance matrix over ten
years for each different month, can reflect the differences between the periods we
want to forecast. These matrices are shown in the appendix.

The process for the experiment can be stated as:

1. Estimate mean vectors and covariance matrices ā1, ā2, . . . , ā12, Σ1, Σ2, . . . , Σ12

from the historical data.

2. • Use ā1, Σ1, under single-period model to find optimal decision x1 for the
1st period

• Use ā1, ā2, . . . , ā12, Σ1, Σ2, . . . , Σ12, under multi-period model to find op-
timal decision x̃1 for the 1st period.

3. Apply x1 and x̃1 to the 1st month and go to step 2 to forecast the optimal
strategy beginning with next month.

Repeat the process above until the end of the 12th month in 2003.

Note that we use different mean vectors and covariance matrices in the forecast-
ing process. If we do not need to reflect the difference between the periods, which
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is using the same mean vector and covariance matrix for the whole 12 months, we
can use the newest asset price to update the mean vector and covariance matrix in
step 3 to get reliable forecast.

For transactions cost and constraint parameters, we choose:

a+
i = 3.5 a−i = 2 β+

i = β−i = 0 , ∀i ∈ {1, . . . , 20}.

For the Diversification constraints, we used the formulation (3.1) on page 22.
The parameters in (3.1) and short selling constraints are:

r = 3 γ = 70% si = 0 , ∀i ∈ {1, . . . , 20}.

For the variance constraints and two different short risk constraints, we select:

σmax =
√

1500 η =

(
η1

η2

)
=

(
80%
95%

)
W low =

(
50
25

)
.

We carry out the process described above and all the parameters stay the same
for each period in the experiment. The first experiment is with cash flow 200 for
each month and initial amount w = 0, and the second experiment is with cash flow
100 for each month and initial amount w = 0.

Adding another asset to express the cash holdings for each period, the third
experiment follows the same process discussed above. The cash flow is 50 for each

month while parameters stay the same except W low =

(
0
−10

)
and σmax =

√
1000.

We increase the size of the problem as discussed before, still following the same
process for experiment.

4.4 Numerical Result and Analysis

The optimal strategy and holdings for the first three experiments are listed below:

Result for experiment with cash flow 200
value of the commodity holdings 1044.9

Single period model total transaction costs 414.8612
total cash and commodity holdings 1044.9+12×200-414.8612 =3030.04
value of the commodity holdings 1131.4

Multi-period model total transaction costs 371.8835
total cash and commodity holdings 1131.4+12×200-371.8835=3159.51
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Result for experiment with cash flow 100
value of the commodity holdings 722.2259

Single period model total transaction costs 289.8983
total cash and commodity holdings 722.2259+12×100-289.8983 =1632.36
value of the commodity holdings 852.7675

Multi-period model total transaction costs 281.7293
total cash and commodity holdings 852.7675+12×100-281.7293=1771.04

Result for experiment with cash flow 50 and new variable for cash on hand
value of the commodity holdings 377.7366

Single period model cash holdings 208.2462
total cash and commodity holdings 585.9828
value of the commodity holdings 231.3497

Multi-period model cash holdings 415.2706
total cash and commodity holdings 646.6203

The optimal investment strategy for each period is shown in the appendix.
Based upon the numerical results, we can find the advantage of multi-period model.
The single period model is more ‘greedy’, and the multi-period model considers
further future time when ‘forecasting’. The multi-period model can provide better
investment strategy at the end of the planning horizon. Note that ‘better’ means
bigger value of holdings at the end and smaller total transaction costs.

In order to test the maximum number of assets in the portfolio we can solve
for the multi-period model. We select another data of stocks on 100 companies
with Nasdaq company number between 60007000 AND 60008000. The number of
assets are increasing from 20 to 60, and the size of the optimization problem for
multi-period model is 1573 variables with 5293 constraints.

The last series of experiments are focusing on finding the maximum length of
horizon we can solve for the multi-period model. We still use the data with 20
stocks and the same parameters as above, but change the length of historical part
and forecast part of the data. Increase the number of periods from 12 to 24,. . . .

Under Windows environment, we encountered error report from MATLAB when
we wanted to forecast for 41 months. The optimization problem for 40 months uses
1681 variables and 5860 constraints. Under Unix environment, report of out of
memory from MATLAB came out when we wanted to forecast for 37 months. The
size of multi-period model for 36 months is 1517 variables and 5281 constraints.
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These differences for capacity are arising from the size of physical memory under
different computing environments. It is not stable because of the status of memory
on different machines.

One result we get is for the experiment with 60 assets for 12 months. The
optimization problem consisted of 1573 variables and 5293 constraints. We used
the same parameters as above except:

σmax =
√

5000, W low =

( −50
−100

)
,

and the cash infusion for each month is 300. The result was obtained nearly after 1
hour of computing. The largest programming took 35 iterations with 535.8 seconds
computing time to slove.

Result for experiment with 60 assets
value of the commodity holdings 4597.8

Single period model cash holdings 300
total cash and commodity holdings 4897.8
value of the commodity holdings 5309.1

Multi-period model cash holdings 0
total cash and commodity holdings 5309.1

When changing parameters for feasible portfolio, some instances of the single
period model was infeasible while multi- period model never encountered this dif-
ficulty. That is because of the greedy approach of the single period model, it is
easier to reach the boundary of the feasible set and therefore become less stable.
This happened for the experiment with 20 assets and 36 months forecasting, with
the same parameters as above.
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Appendix A

Below, there are the mean vectors and variance matrices for historical prices of 20
stocks. They are calculated by the historical data from Jan 1st, 1993 to Dec 31th,
2002, which are used in the experiment 1 with cash flow 200, experiment 2 with
cash flow 100, experiment 3 with cash flow 50 and new variable for cash on hand.

The mean vector are listed for different months and only covariance matrix of
Jan is listed because of limited space.

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
3.8093 3.9081 1.917 4.048 3.175 4.2274 1.6404 3.7175 3.7803 2.9396 4.0765 4.1174
10.1825 9.8812 7.3388 9.458 8.92 8.696 7.2108 7.7712 9.1759 5.5695 8.6662 8.7862
10.0325 8.7928 11.889 7.7213 11.4662 11.3178 5.8213 6.5275 9.395 8.8317 11.5588 11.9453
6.6948 3.1522 6.618 5.2017 6.0515 4.7458 3.6989 3.2375 5.3924 3.1199 2.2519 4.2429
3.899 -2.7853 4.524 5.035 1.55 1.2825 0.6569 3.2 3.4395 1.4855 -1.3194 3.2197
4.4531 4.5412 4.2434 4.1997 4.0285 3.18 2.8751 3.6876 3.5119 2.7493 3.5931 3.3829
1.7556 1.0164 1.0053 0.6925 -0.0012 1.9203 1.25 1.4784 0.1223 0.4786 0.9772 1.6539
10.9647 7.9025 8.4478 12.174 11.2122 10.7303 9.9407 9.599 10.3097 10.9052 13.6838 11.4487
10.3033 10.8037 10.0588 10.0188 10.0338 9.96 9.615 9.2525 9.8288 9.81 10.175 10.8058
6.144 5.986 5.9383 5.7858 6.1625 5.7945 6.0375 5.8232 6.1502 5.6172 6.015 5.2022
14.525 14.01 14.0063 10.482 13.9952 14.61 15.0125 14.559 12.1813 15.6075 12.185 16.411
19.211 19.1498 19.325 19.5123 13.8313 19.38 19.4175 12.9692 13.0303 19.154 16.9593 19.8875
26.2022 25.684 26.183 27.9842 27.4983 26.341 26.464 26.1812 25.3807 25.3475 25.8793 27.1108
15.5195 16.644 17.7388 18.3623 17.2898 17.4875 17.3238 17.9125 16.8788 15.5967 15.4308 15.8313
25.7188 25.4275 25.5718 23.929 24.1725 24.3133 23.66 23.7957 25.3595 25.5405 25.4675 26.1413
5.729 4.721 2.3175 3.9 4.3145 4.3877 4.3812 3.0637 1.7456 4.1101 2.6408 5.4292
9.6537 9.7737 8.7751 8.6435 9.346 9.5825 9.4289 9.3007 9.5723 9.5892 9.6573 9.2977
9.7075 9.7532 10 9.9675 5.5638 8.8255 9.9983 9.8755 7.226 10.0095 9.9095 10.1203
9.156 9.6928 9.8938 9.925 10.1855 9.5648 9.2508 8.7706 8.6734 8.6516 8.4525 9.065
5.8532 6.7594 5.4562 5.6535 5.4465 6.5856 5.9556 6.3143 7.1507 6.3812 5.5174 6.3071
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7.3711 2.2715 3.4555 1.9606 4.2644 -0.7312 2.2549 1.2495 -0.5727 5.7359 4.5924 3.1451 6.0231 3.5278 7.4589 0.4991 0.3551 3.0285 -0.1846 5.1559

2.2715 29.3192 11.1474 3.0409 -0.7437 -3.5204 1.5954 56.0378 3.6796 -6.4441 12.9727 -2.4021 -3.5953 -16.149 7.0995 -1.2498 15.9639 -0.8884 -11.4212 7.1982

3.4555 11.1474 48.8895 -1.6298 10.8643 -6.334 -3.9121 -2.9144 13.2984 -20.2356 48.705 -10.8439 46.3605 -16.4018 15.4603 -5.2358 10.0472 9.4785 -14.8952 11.5962

1.9606 3.0409 -1.6298 4.2749 -3.2819 -0.0079 -3.7969 0.9414 -1.4587 -0.2151 -6.5107 -4.125 -9.7154 -2.1704 0.4782 -0.8228 3.7274 -0.0287 -1.5546 2.7827

4.2644 -0.7437 10.8643 -3.2819 24.7693 0.5311 7.6513 -5.5812 -2.9485 -7.2036 13.54 -3.4328 18.2761 -4.3171 -0.3843 0.1232 -0.6584 4.0135 -4.0064 4.1799

0.7312 -3.5204 -6.334 -0.0079 0.5311 5.6379 -0.1781 -1.4637 -3.6939 0.1003 -10.8207 -3.3516 -6.2061 6.2172 7.247 0.8625 -4.6663 -0.0526 2.1141 3.4414

-2.2549 1.5954 -3.9121 -3.7969 7.6513 -0.1781 9.1764 9.3254 0.0519 2.0432 4.0097 6.8309 2.7774 -0.2186 0.5027 2.4709 0.3758 -0.3452 1.5204 -3.6169

1.2495 56.0378 -2.9144 0.9414 -5.5812 -1.4637 9.3254 155.808 5.6714 -1.9038 3.1838 6.1377 -28.4137 -29.5018 0.2517 1.6384 16.9093 -14.149 -9.886 4.0696

0.5727 3.6796 13.2984 -1.4587 -2.9485 -3.6939 0.0519 5.6714 11.3644 -4.7579 22.184 10.0299 17.1058 -2.4439 12.4538 0.7635 3.4841 2.5282 0.3905 -0.2072

-5.7359 -6.4441 -20.2356 -0.2151 -7.2036 0.1003 2.0432 -1.9038 -4.7579 12.0209 -19.9638 3.4035 -20.9859 2.273 -15.4693 1.3105 -3.7459 -6.1068 6.027 -9.3901

4.5924 12.9727 48.705 -6.5107 13.54 -10.8207 4.0097 3.1838 22.184 -19.9638 75.8326 18.1179 63.981 -11.3044 29.7888 -0.841 12.7285 10.9253 -11.2832 7.4857

3.1451 -2.4021 -10.8439 -4.125 -3.4328 -3.3516 6.8309 6.1377 10.0299 3.4035 18.1179 37.8071 11.6372 13.7497 14.9097 6.7635 -1.7053 0.575 11.224 -7.893

6.0231 -3.5953 46.3605 -9.7154 18.2761 -6.2061 2.7774 -28.4137 17.1058 -20.9859 63.981 11.6372 74.7185 3.855 22.6082 -0.7249 -1.0414 14.491 -5.1101 5.1378

3.5278 -16.149 -16.4018 -2.1704 -4.3171 6.2172 -0.2186 -29.5018 -2.4439 2.273 -11.3044 13.7497 3.855 27.9803 13.9678 4.3751 -11.9177 4.2537 11.6559 -1.6197

7.4589 7.0995 15.4603 0.4782 -0.3843 7.247 0.5027 0.2517 12.4538 -15.4693 29.7888 14.9097 22.6082 13.9678 69.354 4.3248 7.2704 11.9735 -1.6146 19.611

0.4991 -1.2498 -5.2358 -0.8228 0.1232 0.8625 2.4709 1.6384 0.7635 1.3105 -0.841 6.7635 -0.7249 4.3751 4.3248 1.9694 -1.2522 0.1345 3.3597 -1.4385

0.3551 15.9639 10.0472 3.7274 -0.6584 -4.6663 0.3758 16.9093 3.4841 -3.7459 12.7285 -1.7053 -1.0414 -11.9177 7.2704 -1.2522 14.8911 1.8846 -8.7397 4.6079

3.0285 -0.8884 9.4785 -0.0287 4.0135 -0.0526 -0.3452 -14.149 2.5282 -6.1068 10.9253 0.575 14.491 4.2537 11.9735 0.1345 1.8846 5.9745 -1.5555 4.1713

-0.1846 -11.4212 -14.8952 -1.5546 -4.0064 2.1141 1.5204 -9.886 0.3905 6.027 -11.2832 11.224 -5.1101 11.6559 -1.6146 3.3597 -8.7397 -1.5555 11.0309 -7.0974

5.1559 7.1982 11.5962 2.7827 4.1799 3.4414 -3.6169 4.0696 -0.2072 -9.3901 7.4857 -7.893 5.1378 -1.6197 19.611 -1.4385 4.6079 4.1713 -7.0974 13.1275

Covariance matrix for January

33



Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec holdings

0 0 0 15.0726 -4.5018 0 0 0 0 -9.6603 0 0 0.9105

3.2817 0 1.0893 0.3814 -4.7525 0 0 0 0 0 0 0 0

0 0.0675 2.5589 0.3645 -2.2198 0 0 0 0 -0.7711 0 0 0

11.8934 -10.0735 4.4161 -1.3928 2.3755 0 0 0 0 -7.2187 0 0 0

0 0 1.5273 -1.5273 0 0 0 0 0 2.1149 0 0 2.1149

2.3999 8.9463 -4.9985 7.15 4.6114 0 0 0 0 -16.8364 0 0 1.2727

0 0 0 0 0 0 0 0 0 0 0 0 0

Transaction 0 0 0 0 0 0 0 0 0 0 0 0 0

amount 0 0 0 1.1806 -1.1806 0 0 0 0 0.3771 0 0 0.3771

in each month 9.3359 6.0977 -0.5015 5.6889 -4.4894 0 0 0 0 15.2831 0 0 31.4147

0 0 1.938 0.0556 1.7238 0 0 0 0 1.1629 0 0 4.8803

0.0272 0.8784 2.0689 0.9857 -2.7963 0 0 0 0 0.8428 0 0 2.0067

1.1142 1.9475 1.3754 0.5243 1.28 0 0 0 0 1.054 0 0 7.2954

0 1.0178 2.4774 0.9343 2.2968 0 0 0 0 1.9615 0 0 8.6878

0 0.3551 -0.2756 0.5887 -0.3023 0 0 0 0 1.0091 0 0 1.375

0 0 0 2.5442 -2.5442 0 0 0 0 0 0 0 0

2.9349 5.1761 -8.1109 0 5.0754 0 0 0 0 -1.9423 0 0 3.1332

0 0 0 1.295 -1.295 0 0 0 0 2.717 0 0 2.717

0 0 0 1.0878 2.5481 0 0 0 0 1.4642 0 0 5.1001

0 0 0 0 0 0 0 0 0 5.0592 0 0 5.0592

Transaction cost 61.9743 59.046 48.7889 78.6274 63.9041 0 0 0 0 102.5204 0 0 414.8611

Table 1: Numerical result for single period model in experiment 1 with cash flow 200

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec holdings

0 1.0244 1.573 -2.502 0 0 0 -0.0765 0.0188 0.8528 0 4.472 5.3625

3.9306 -0.412 -0.9053 -2.4809 0 0 0 2.1666 -2.299 0.2265 0 0 0.2265

0 0.7005 0.5566 2.0327 0 0 0 -1.1245 -1.8953 0.012 0 1.7064 1.9884

0 1.5593 -0.9472 -0.2263 0 0 0 -0.3595 -0.0263 0 0 0 0

0 0.8178 2.1385 -1.333 0 0 0 0.7065 -2.3298 2.8116 0 1.8164 4.628

0 2.5964 1.61 0.2002 0 0 0 4.759 -9.1657 0.3777 0 -0.3777 0

0 0.9552 0.361 3.3745 0 0 0 -4.649 -0.0417 0 0 0 0

Transaction 0 0.608 1.2235 -1.3069 0 0 0 -0.5168 -0.0078 0 0 0.8071 0.8071

amount 0 0.4514 0.0496 -0.2243 0 0 0 0.6194 0.0172 1.5004 0 -2.2629 0.1508

in each month 8.5327 1.6087 -0.6899 -2.7007 0 0 0 7.8024 -0.7068 11.2282 0 9.9427 35.0173

0 0.6198 0.9749 0.7955 0 0 0 -1.357 0.9701 0.8544 0 0.7411 3.5988

0.6776 -0.1775 -0.3425 -0.0933 0 0 0 1.148 1.149 -2.3612 0 0 0

0.9972 1.0657 1.0691 1.0324 0 0 0 0.8831 0.8641 0.7744 0 0.6808 7.3668

1.7165 1.7105 1.9257 1.8375 0 0 0 1.6051 0.0971 1.4411 0 1.2293 11.5628

0.9462 -0.5093 -0.3453 -0.0313 0 0 0 -0.0273 -0.033 0.1391 0 -0.0659 0.0732

0 0.6265 1.167 3.4999 0 0 0 1.31 1.8056 -8.4089 0 2.1436 2.1437

1.8196 -0.2807 -1.2575 -0.0373 0 0 0 -0.0751 0.7758 2.5398 0 2.3599 5.8445

0 0.4782 -0.0907 -0.1875 0 0 0 0.9218 0.5127 1.9961 0 -2.4615 1.1691

0 0.8936 0.8676 1.4417 0 0 0 1.4523 1.3641 1.0758 0 -1.9369 5.1582

0 1.3209 0.8885 0.2947 0 0 0 -1.7792 4.1671 -0.5568 0 3.5434 7.8786

Transaction cost 37.2408 35.453 33.3883 40.1418 0 0 0 56.7134 39.9695 62.9868 0 65.9899 371.8835

Table 2: Numerical result for multi-period model in experiment 1 with cash flow 200
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Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec holdings

0 0 0 9.8801 -3.0309 0 0 0 0 0 -0.8588 0.9574 6.9478

4.2043 0 -3.8932 1.5388 -1.85 0 0 0 0 0 2.4303 -2.4303 0

0 0 1.0462 0.0348 4.1561 0 0 0 0 0 0.837 1.0993 7.1734

4.8457 -3.5827 8.8431 -5.2805 -1.3347 0 0 0 0 0 2.0541 -5.5449 0

0 0 0 0.9163 -0.9163 0 0 0 0 0 1.3247 0.8209 2.1456

0 5.1565 -4.8739 3.0199 5.2928 0 0 0 0 0 -3.3759 -3.4209 1.7985

0 0 0 0 0 0 0 0 0 0 0 0 0

Transaction 0.634 -0.634 0 0.1458 -0.1458 0 0 0 0 0 0 0.181 0.181

amount 0 0 0 0.4986 1.0492 0 0 0 0 0 0.638 -0.5413 1.6445

in each month 5.8482 4.3152 -1.5015 4.4539 0.5364 0 0 0 0 0 5.6117 7.8121 27.076

0 0 0.7924 0.1533 0.6043 0 0 0 0 0 -1.5499 0.4774 0.4775

0 0.0882 0.8459 0.4163 -0.1088 0 0 0 0 0 0.0332 -0.9652 0.3096

0 0.6791 0.7268 0.2214 0.4487 0 0 0 0 0 0.342 0.4386 2.8566

0 0.5866 1.0129 0.3946 0.8051 0 0 0 0 0 0.5756 0.7919 4.1667

0 0.4095 0.6241 0.2486 0.4983 0 0 0 0 0 0.3027 0 2.0832

0 0 0 0.7835 -0.7835 0 0 0 0 0 0 1.381 1.381

1.8385 2.9834 -1.441 0 1.6714 0 0 0 0 0 0.4265 -3.1159 2.3629

0 0 0 0.547 -0.375 0 0 0 0 0 0.8514 0.9749 1.9983

0 0 0 0.4595 0.8932 0 0 0 0 0 0 0.0464 1.3991

0 0 0 0 0 0 0 0 0 0 1.3325 2.2828 3.6153

Transaction cost 34.7412 32.6537 39.4924 52.7055 40.456 0 0 0 0 0 39.3037 50.5459 289.8984

Table 3: Numerical result for single period model in experiment 2 with cash flow 100

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec holdings

0 0 0 3.7033 0 0 0 -3.7033 0 1.3684 0.3117 2.7594 4.4395

3.5473 0 -1.4571 0.8637 -2.9539 0 0 0 0 2.2566 2.1761 -2.1579 2.2748

0 0 0.9041 0 3.3659 0 0 -2.6583 0 -0.8848 0.8175 1.0529 2.5973

0 4.1873 2.7492 0 -0.0836 0 0 -6.8529 0 0 4.4136 -4.4136 0

0 0 0 0 0 0 0 1.6852 0 0.0098 0.742 1.1208 3.5578

0 1.5067 0 0 2.4962 0 0 3.1061 0 0 -0.5845 -6.5245 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Transaction 0 0 0 0 0 0 0 0 0 0 0 0.0365 0.0365

amount 0 0 0 0 0 0 0 0.885 0 0 0.4055 0 1.2905

in each month 9.0771 2.2042 -0.4781 2.8982 0.6102 0 0 -1.2473 0 5.9907 1.7085 6.8593 27.6228

0 0 0.6847 0 0.6388 0 0 0.5332 0 0.4401 -1.7145 0.4573 1.0396

0 0 0.731 0.8643 0.0119 0 0 -0.0534 0 -1.163 -0.3908 0 0

0.3564 0.4471 0.6456 0.5346 0.4744 0 0 0.4729 0 0.3989 0.334 0.4201 4.084

0.6522 0.7465 0.8753 0.8193 0.8512 0 0 0.8595 0 0.7423 0.5622 0.7585 6.867

0.0885 0.322 0.3805 0.5162 0.5268 0 0 0.4559 0 0.2659 0.2956 -0.5947 2.2567

0 0 0 0 0 0 0 1.5232 0 -1.5232 1.2341 1.3227 2.5568

0.516 2.8859 -2.0045 0 0.8307 0 0 0.287 0 0.7348 -1.0548 -0.9583 1.2368

0 0 0 0.1776 -0.1776 0 0 1.3146 0 1.0282 0.8316 0.9338 4.1082

0 0 0 0.9539 0.9443 0 0 0.7924 0 0.5541 0.4338 -0.9854 2.6931

0 0 1.1247 0 1.1583 0 0 -1.5875 0 -0.6614 1.6795 2.1864 3.9

Transaction cost 28.4748 24.5997 20.13 22.6621 27.0321 0 0 39.9325 0 31.8121 35.6361 51.45 281.7294

Table 4: Numerical result for multi-period model in experiment 2 with cash flow 100
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Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec holdings

0 0 0 5.0041 -0.4721 0 -1.1624 0 0 0 0 0 3.3696

3.9242 0.1914 -2.3042 0.877 -2.1048 0.1991 0 0 0 0 0.3462 0.1937 1.3226

0 0 0.4031 0 1.7726 0 -1.6355 0 0 0 0.1192 0.0643 0.7237

1.2614 0 3.0512 0 0 0.8494 -1.0465 -4.1155 0 0 0.9354 0.4597 1.3951

0 0 0 0.5752 0 -0.5752 0 0.3873 -0.3196 0 0 0 0.0677

0 0.3874 0 0 1.1005 0 0 0.7138 0 0 0 0 2.2017

0 0 0 0 0 0 0 0 0 0 0 0 0

Transaction 0.225 0 -0.225 0 0 0.1034 -0.1034 0 0 0 0.0737 0.1781 0.2518

amount 0 0 0 0.313 0.3813 0 0.4507 0.2034 0.1041 0 0 0 1.4525

in each month 1.5223 5.2321 0 0.7636 0 0.6072 0 0 0 0 0.7994 0.4572 9.3818

0 0 0.3053 0 0.2196 0 0.2539 0.1225 0.0643 0 -0.2304 0 0.7352

0.0874 0.0663 0.3259 0.2614 0.3157 0.0614 0.3293 -0.376 0.0762 0 0 0.0421 1.1897

0 0.0455 0.3518 0.139 0.1631 0.0351 0.2334 0.1087 0.0573 0 0.0487 0.0257 1.2083

0 0.0759 0.3903 0.2477 0.2926 0.0648 0.4029 0.1975 0.0944 0 0.082 0.0463 1.8944

0.0597 0.053 0.2405 0.1561 0.1811 0.0362 0.2182 0.1048 0.0549 0 0.0431 0.0265 1.1741

0 0 0 0.4918 0 0 0.8337 0.35 0.1941 0 -0.059 0 1.8106

0.4786 1.3609 0 0 0 0 0 0 -0.6734 0 0.1776 0.089 1.4327

0 0 0 0.3434 0 0 0.598 0.3021 0.157 0 0.1213 0 1.5218

0 0 0 0.2884 0.3246 0 0.3788 0.1821 0.0905 0 0 -0.1543 1.1101

0 0 0 0 0 0.1885 0 0 0.2617 0 0 0.1336 0.5838

Cash on hand 0 4.9327 0.4183 0 0 36.6054 34.8552 50.9175 86.4815 136.4815 168.7525 208.2462

Transaction cost 26.4548 25.9433 22.7964 33.1126 21.782 8.6585 20.842 18.3359 6.0264 0 10.192 6.315

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec holdings

0 0 0 4.2744 0 0 0 0 0 0 0 0 4.2744

0.4537 0.3359 0.5523 0.4783 -0.5126 0 0 0 0 0.1939 0.2603 0.1869 1.9487

0 0 0 0.1413 1.3776 -0.1475 -0.2408 -0.0512 0.4379 0.0666 0.0896 0.0621 1.7356

0 0 0 0 0 0 0 0 0 0 0 3.1355 3.1355

0 0 0 0 0.3116 0 0 0 -0.3116 0 0 0 0

0 0 0 0 0.8448 0 0 0 0 0 0 0 0.8448

0 0 0 0 0 0 0 0 0 0 0 0 0

Transaction 0.1907 0 0 0.1801 0 0 0 -0.3708 0 0.087 0.24 0.1719 0.4989

amount 0 0 0 0.155 0.1675 0.0532 0.0632 0.0692 0.1128 0 0 0.0483 0.6692

in each month 1.2907 1.1356 2.2803 0.6478 0 0 0 0 0 0.404 0.601 0.4412 6.8006

0 0 0 0.0979 0.0964 0.0298 0.0356 0.0417 0.0697 0 0 0 0.3711

0.0212 0 0.1322 0.1294 0.1387 0.0454 0.0462 0.0481 0.0826 0.041 0.0502 0.0406 0.7756

0 0.0152 0 0.0688 0.0716 0.026 0.0327 0.037 0.0621 0.0279 0.0366 0.0248 0.4027

0 0 0 0.1227 0.1285 0.048 0.0565 0.0673 0.1023 0.0519 0.0616 0.0447 0.6835

0 0.0619 0.0279 0.0773 0.0795 0.0268 0.0306 0.0357 0.0594 0.0267 0.0324 0.0255 0.4837

0 0 0 0.2435 0.2574 0 0.1169 0.1192 0.2103 0 0 0 0.9473

0.4057 0.451 0.6646 0.331 0.0052 0 0 -0.061 -0.04 0.0914 0.1336 0.0859 2.0674

0 0 0 0.17 0.1898 0.0653 0.0839 0.1029 0.1701 0.0718 0 0.0282 0.882

0 0 0 0.1428 0.1426 0 0 0.062 0.098 -0.2212 -0.2242 0 0

0 0 0 0.3291 0 0 0 0 0 0 0 0.1289 0.458

Cash on hand 35.3166 71.5531 98.1005 112.9697 138.8299 184.0009 227.5552 269.2364 304.5008 346.1853 384.8016 415.2706

Transaction cost 8.267 6.9984 12.8004 26.5628 14.3644 1.3251 2.1113 3.0068 5.622 4.16 5.7171 15.4861

Table 5: Numerical result for single period model in experiment 3 with cash flow 50 and cash on hand

Table 6: Numerical result for multi-period model in experiment 3 with cash flow 50 and cash on hand
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