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Abstract

Motivated by the successful application of geometry to proving
the Harary-Hill Conjecture for “pseudolinear” drawings of Kn, we
introduce “pseudospherical” drawings of graphs. A spherical drawing
of a graph G is a drawing in the unit sphere S2 in which the vertices
of G are represented as points—no three on a great circle—and the
edges of G are shortest-arcs in S2 connecting pairs of vertices. Such a
drawing has three properties: (1) every edge e is contained in a simple
closed curve γe such that the only vertices in γe are the ends of e; (2)
if e 6= f , then γe ∩ γf has precisely two crossings; and (3) if e 6= f ,
then e intersects γf at most once, either in a crossing or an end of e.
We use Properties (1)–(3) to define a pseudospherical drawing of G.
Our main result is that, for the complete graph, Properties (1)–(3)
are equivalent to the same three properties but with “precisely two
crossings” in (2) replaced by “at most two crossings”.
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The proof requires a result in the geometric transversal theory of
arrangements of pseudocircles. This is proved using the surprising
result that the absence of special arcs (coherent spirals) in an arrange-
ment of simple closed curves characterizes the fact that any two curves
in the arrangement have at most two crossings.

Our studies provide the necessary ideas for exhibiting a drawing
of K10 that has no extension to an arrangement of pseudocircles and
a drawing of K9 that does extend to an arrangement of pseudocircles,
but no such extension has all pairs of pseudocircles crossing twice.

1 Introduction

The Harary-Hill Conjecture states that the crossing number of the complete
graph Kn is given by the formula
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1
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Some of the known families of drawings of Kn achieving H(n) crossings have
the geometric character of being spherical: a spherical drawing of a graph G
is a drawing in the unit sphere S2 in which the vertices of G are represented
as points—no three on a great circle—and the edges of G are shortest-arcs
in S2 connecting pairs of vertices.

Examples of families having H(n) crossings are: Hill’s Tin Can Drawings
[18]; Kynčl’s general spherical drawing in his posting [20]; the family of
Ábrego et al. [5] in which every edge is crossed at least once; and the crossing-
minimal 2-page drawings in Ábrego et al. [6, Sec. 4.3, 4.4], where they show
that the 2-page crossing number of Kn is H(n). The first three of these are
known to be spherical.

A surprising result by Moon [23] states that the number of crossings in
a random spherical drawing of Kn has, as n goes to infinity, 3

8

(
n
4

)
cross-

ings. Thus, spherical drawings are linked with the asymptotic version of the
Harary-Hill Conjecture:

lim
n→∞

cr(Kn)(
n
4

) =
3

8
.

No drawing of Kn having H(n) crossings is known to be non-spherical
(at least up to Reidemeister-type moves; see below). (For n even, the 2-page
drawings in [6] are “pseudospherical”; see the discussion in our Section 4.)
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However, it is still unknown whether every spherical drawing of Kn has at
least H(n) crossings.

The analogue in the plane of spherical drawings is rectilinear drawings.
A rectilinear drawing of a graph G is a drawing of G in the plane so that
its edges are straight-line segments. One of the most important recent ac-
complishments in the study of crossing numbers is a result of Ábrego and
Fernández-Merchant [1] and, simultaneously and independently, Lovász et al.
[21], showing that rectilinear drawings of Kn have at least H(n) crossings.
(It follows from [7], especially Theorem 11 there, that, for n ≥ 10, rectilinear
drawings have strictly more than H(n) crossings.) There is a quite direct line
from this early work, via shellability [3, 4], to Ábrego et al [6] determining
the 2-page crossing number of Kn.

The proofs that rectilinear drawings of Kn have at least of H(n) crossings
use machinery for studying arrangements of pseudolines, and only require the
property that the edges in a rectilinear drawing can be extended to such an
arrangement. Drawings whose edges can be extended into an arrangement
of pseudolines are called pseudolinear. An analogous property is satisfied by
spherical drawings: each edge can be extended to a great circle. This implies
that the edges can be extended into an arrangement of pseudocircles , defined
as a set of simple closed curves in S2 such that every two intersect at most
twice, and every intersection is a crossing between two curves.

The success of the geometric approach for the rectilinear crossing number
of Kn suggests trying an analogous approach for spherical drawings, replacing
pseudolinear drawings with a suitable generalization of spherical drawings,
which we call “pseudospherical” drawings and define below.

There are nice characterizations of pseudolinear drawings of Kn. Aich-
holzer et al. [8] prove that a drawing of Kn in the plane is pseudolinear if and
only if every crossing K4 has the facial 4-cycle bounding the infinite face of
the K4. Arroyo et al. [10] have an equivalent characterization: a drawing of
Kn is pseudolinear if and only if it is f-convex. Arroyo et al. [9] characterize
when a drawing of a general graph in the plane is pseudolinear.

The notion of an f-convex drawing is introduced by Arroyo et al. in [12]
as part of the convexity hierarchy :

{convex drawings} ⊃ {h-convex drawings} ⊃ {f-convex drawings}.

A drawing D of Kn is convex if, for each 3-cycle T of Kn, there is a closed
side ∆ of the drawing D[T ] of T such that, if vertices x, y are drawn in ∆,
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then D[xy] ⊆ ∆. A principal theorem in [11] is a partial result suggesting
that all crossing-minimal drawings of Kn might be convex.

A convex drawing D of Kn is h-convex if the convex side ∆T of each 3-
cycle T may be chosen so that, if a 3-cycle T ′ is, for another 3-cycle T , drawn
in ∆T , then ∆T ′ ⊆ ∆T . In unpublished work, the method for the principal
theorem in [11] mentioned above shows that a convex, but not h-convex,
drawing of Kn is not crossing-minimal. Putting these two ideas together, it
is conceivable that every crossing-minimal drawing of Kn is h-convex.

It is quite easy to show that every spherical drawing is h-convex (see
Section 4). However, it is not true that every h-convex drawing is spherical.
The property of h-convexity is preserved under (the natural analogue of) Rei-
demeister III moves, but sphericity is not. Reidemeister III moves preserve
three properties of spherical drawings which we take as the definition of a
pseudospherical drawing.

f g

e

f g

e

Figure 1: Reidemeister III move.

A drawing of a graph G in the sphere is pseudospherical if, for any distinct
edges e and f :

(PS1) e is contained in a simple closed curve γe such that no vertex
other than an end of e is contained in γe;

(PS2) |γe ∩ γf | = 2 and all intersections are crossings; and

(PS3) e ∩ γf has at most one point.

The least obvious part of the definition is perhaps (PS3), which can be
thought of as a combinatorial analogue of the property that an edge in a
spherical drawing is not just a geodesic arc between its endpoints, but a
shortest-arc between its endpoints.

Since the number of crossings of a drawing is also preserved under Rei-
demeister III moves, one obtains non-spherical drawings of Kn with H(n)
crossings from the spherical examples given above. It is more natural to
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consider pseudospherical drawings than spherical drawings of Kn in connec-
tion with crossing-minimality because pseudosphericity is preserved under
Reidemeister III moves.

The principal part of our main theorem is to show that a drawing of
Kn is pseudospherical if and only if it is h-convex, a property which can be
checked in polynomial time (see Section 4). This can be seen as a parallel
to the characterization by Arroyo et al. [10] of pseudolinear drawings of Kn

as f-convex drawings of Kn. The equivalence also enables the introduction
of geometric methods to the study of h-convex drawings and bolsters the
idea that all crossing-optimal drawings of Kn are h-convex/pseudospherical:
evidence that crossing-optimal drawings of Kn are h-convex is evidence that
they are pseudospherical and vice versa.

In fact, we will do quite a bit more than characterize pseudospherical
drawings of Kn. The reader may have wondered about the choice of equality
in (PS2). A natural variation of the notion of a pseudospherical drawing
results from weakening (PS2). A drawing D is weakly pseudospherical if it
satisfies (PS1), (PS3), while (PS2) is relaxed to

(PS2w) |γe ∩ γf | ≤ 2 and all intersections are crossings.

Our main result is the following.

Theorem 1.1. For a drawing D of Kn, the following are equivalent:

(1.1.1) D is pseudospherical;

(1.1.2) D is weakly pseudospherical; and

(1.1.3) D is h-convex.

The implication (1.1.1)⇒ (1.1.2) is trivial. Although the reader may not
see it now, the implication (1.1.2) ⇒ (1.1.3) is quite easy. The hard part is
(1.1.3)⇒ (1.1.1). We do not see how to prove (1.1.2)⇒ (1.1.1) directly.

The proof of (1.1.3)⇒ (1.1.1) proceeds by iteratively finding a curve γe′
for the next edge e′ to extend by one the current set Γ of γes satisfying the
conditions (PS1)–(PS3). There are two principal steps involved. The first
step is to find two initial approximations for γe′ (when added to Γ, either of
these will satisfy (PS2w)), while the second is to repeatedly shift one of the
initial approximations, gradually increasing the number of curves in Γ that
it intersects until it intersects them all, at which point it is a Γ-transversal.
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Each of these steps has its challenges. To find the initial approxima-
tions, we require an extensive study of h-convex drawings; this is done in
Section 4. Crucially, each edge of an h-convex drawing partitions the ver-
tex set of Kn into two pseudolinear drawings of (typically smaller) complete
subgraphs; the initial approximations are near the outer boundary of each of
these pseudolinear subdrawings. (Motivated by this study, we tried to show
this partitioning holds for pseudospherical drawings of general graphs. In a
personal communication, Xinyu Lily Wang has shown that it is false in the
more general context.)

Producing the Γ-transversal requires shifting one of a pair of initial ap-
proximations from the preceding paragraph towards the other using ana-
logues of Reidemeister II and III moves. The core of the shifting turns out to
require a characterization of an arrangement of pseudocircles: a set of simple
closed curves in the sphere such that every two intersect at most twice, and
every intersection is a crossing between the two curves.

The characterization of arrangement of pseudocircles requires an even
more general notion. An arrangement of simple closed curves in the sphere
is a set of simple closed curves, any two of which have finitely many inter-
sections, all of which are crossings. If Σ is an arrangement of simple closed
curves, then a spiral of Σ is an arc (that is, a homeomorph of a compact
interval) in the union P (Σ) of the curves in Σ that always makes the same—
either all left or all right—turn in changing from one curve to another (see
Figure 2). In Section 2, we give a more precise definition of spiral and define
coherent spirals . The auxiliary result that we need is the following.

Theorem 1.2. Let Σ be an arrangement of simple closed curves. Then Σ is
an arrangement of pseudocircles if and only if Σ has no coherent spirals.

Our study of spirals led us to two drawings, one for each of K10 and K9.
The former has no extension of its edges to an arrangement of pseudocircles.
The latter has such an extension, but no extension has all pseudocircles
crossing exactly twice. These examples are exhibited in Section 7.

Independently, Aichholzer at the 2015 Crossing Number Workshop in Rio
de Janeiro and Pilz at the Geometric Graph Week in Berlin (2015) asked if
every drawing of Kn has an extension to an arrangement of pseudocircles.
The drawing of K10 answers this question in the negative. The drawing of
K9 answers negatively the related question of improving a pseudocircular
extension to a pseudospherical extension.
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In the next section, we introduce spirals and prove Theorem 1.2. Sec-
tion 3 contains the proof that an initial pair of approximations for Γ implies
the existence of a Γ-transversal. Section 4 introduces h-convex drawings and
proves the easy implication (1.1.2) ⇒ (1.1.3). Section 5 contains the nec-
essary discussion of h-convex drawings to obtain the initial approximations,
which is done in Section 6, thereby completing the proof of Theorem 1.1.
The interesting drawings of K9 and K10 are in Section 7, while Section 8 has
concluding remarks.

2 Spirals and Coherence

A spiral is a special arc, illustrated in Figure 2 and defined precisely below, in
the union of an arrangement of simple closed curves that has all its crossings
facing the same side of the arc. (Alternatively, a spiral always makes the
same—either all left or all right—turn when it changes from one curve to
another; it is permitted to continue straight through a crossing.) The main
result in this section is a characterization of arrangements of pseudocircles as
either (a) not having any “coherent” spirals or, equivalently, (b) every spiral
has an “external segment”. That an arrangement of pseudocircles has no
coherent spiral is the point required for the proof of Theorem 1.1.

Figure 2: An example of a spiral.

In an arrangement of simple closed curves Γ (defined just before Theorem
1.2), three or more of the curves in Γ may cross at the same point. This is
necessary for extensions of drawings of Kn, where n−1 curves pairwise cross
at each vertex.
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A non-trivial arc (that is, not just a single point) A in the union P (Γ)
of the curves in Γ with ends s and t has a unique decomposition sequence
α0α1 . . . αm of subarcs of A, as depicted in Figure 3, such that:

(i) s is an end of α0, t is an end of αm;

(ii) for each i = 0, 1, . . . ,m, there is a γi ∈ Γ such that αi ⊆ γi; and

(iii) for i = 1, 2, . . . ,m, the curves γi−1 and γi in Γ are distinct and αi−1∩αi

is a crossing of γi−1 and γi.

The number m is the weight of A. Figure 3 shows an arrangement of simple
closed curves with an arc of weight 3. For i = 1, 2, . . . ,m, the crossing of
αi−1 with αi is denoted ×i. For convenience, we set ×0 = s and ×m+1 = t.

×1

×2

×3

s

t

α0

α1

α2

α3

Figure 3: Illustrated is an arrangement of four simple closed curves. The
st-arc indicated by the dotted curve has decomposition sequence α0α1α2α3.
Notice that the ×3t-arc α3 makes no turn at the crossing in its middle and
the right-hand circle is both γ1 and γ3.

For i = 0, 1, . . . ,m, α−i and α+
i are the closures of the components of

γi \ A incident with ×i and ×i+1, respectively. Four such αε
j are illustrated

in Figure 4. Evidently, α±i consists of the continuation of αi through either
×i (−) or ×i+1 (+) up to the next meeting with A.

The continuations α+
i and α−i+1 both leave ×i+1 on the same side of A.

This is the side of A that ×i+1 faces . In Figure 3, ×1 and ×2 face different
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sides of the dotted arc. We are now prepared for the definitions of spiral,
external segment, and coherence.

Definition 2.1 (Spiral, External Segment, Coherence). Let Γ be an arrange-
ment of simple closed curves and let A be an arc in P (Γ) with decomposition
sequence α0α1 . . . αm. For each i = 0, 1, 2 . . . ,m, let γi ∈ Γ be such that
αi ⊆ γi. (Only consecutive γi are required to be distinct; if j > i + 1, then
γj could be the same as γi.)

(2.1.1) The arc A is a spiral if all of ×1, . . . ,×m face the same side of A.

(2.1.2) For i ∈ {0, 1, 2, . . . ,m}, the segment αi is{
external for A, γi ∩ A = αi

internal for A, otherwise
.

(2.1.3) For i ∈ {0, 1, 2, . . . ,m} and ε ∈ {+,−}, the arc αε
i is a coherent

extension if: (a) αi is internal for A and (b) αε
i has both ends on

the same side (see discussion of “side” below) of the interior of
A. (In Figure 4, α−1 is not a coherent extension; the other three
are.)

(2.1.4) For i ∈ {0, 1, 2, . . . ,m}, the segment αi is coherent if at least one
of α−i and α+

i is a coherent extension. In Figure 4, both α0 and
α3 are coherent.

(2.1.5) The arc A is coherent if, for each i = 0, 1, 2, . . . ,m, αi is coherent.

As we traverse A from one end to the other, there are naturally left and
right sides. The two ends of the arc α±i are in A. The issue in the definition
of coherence is: are the points near each end of α±i on the same side of A or
not. “Left” and “right” depend on an orientation of A and are irrelevant to
us.

To be on the same side, the ends of α±i must be in the interior of A. As
the points ×0 and ×m+1 are not in the interior of A, we have the following.

Remark 2.2. Neither α−0 nor α+
m is coherent.

The following characterization of an arrangement of pseudocircles in terms
of its spirals seems to be quite interesting in its own right. We only need
(2.3.1)⇒ (2.3.2) for the proof of Theorem 1.1.
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α0 α1 α2 α3 α4 α5×0 ×1 ×2 ×3 ×4 ×5 ×6

α−
1

α−
3

α+
3

α+
0

Figure 4: Illustrating several points in Definition 2.1. The arc A is home-
omorphic to a straight line segment and is so represented in the diagram.
(Color online.)

Theorem 2.3. Let Γ be an arrangement of simple closed curves in the sphere.
Then the following are equivalent:

(2.3.1) Γ is an arrangement of pseudocircles;

(2.3.2) P (Γ) has no coherent spirals;

(2.3.3) P (Γ) has no coherent spirals with weight 1; and

(2.3.4) every spiral A in P (Γ) has a segment external for A.

This characterization fits in well with much recent work on arrangements
of pseudocircles. The paper of Felsner and Scheucher [15] is one example;
their references [2], [7], [10], [15], [19], and [26] are others. Felsner and
Scheucher have a web page devoted to pseudocircles [16]. Another recent
work about unavoidable configurations in the sense of Ramsey’s Theorem is
Medina et al. [22].

The example to the left in Figure 5 has a spiral A in an arrangement of
pseudocircles. This spiral is not coherent because α1 is external for A.

In addition to its use in the proof of Theorem 1.1, Theorem 2.3 is useful
for constructing drawings of graphs that cannot be extended to arrangements
of pseudocircles. For example, the right-hand diagram in Figure 5 cannot be
extended to an arrangement of pseudocircles because the st-arc indicated by
the dashed curve induces a coherent spiral in any such extension. A similar
idea is used in Section 7 to construct a non-extendible drawing of K10.
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α−
1 = α+

1s t

α0

α1

α2×1 ×2

s t
α0

α1

α2

α3

α4 α5

α6

α7

α8

α9

×1

×2

×3

×4

×5

×6

×7

×8

×9

Figure 5: The dotted arcs are spirals. The left-hand one has weight 2 and
has an external segment. The right-hand one is coherent and is in a drawing
related to the examples in Section 7.

Proof of Theorem 2.3. The implication (2.3.2) ⇒ (2.3.3) is trivial. We
prove (2.3.3) ⇒ (2.3.1) and (2.3.1) ⇒ (2.3.2) to complete the proof that
(2.3.1), (2.3.3), and (2.3.2) are equivalent. Since (2.3.4) ⇒ (2.3.2) is trivial,
we finish the proof with (2.3.2)⇒ (2.3.4).

(2.3.3)⇒ (2.3.1). Suppose by way of contradiction that γ0, γ1 are distinct
curves in Γ such that |γ0 ∩ γ1| > 2. Then |γ0 ∩ γ1| ≥ 4. Let s ∈ γ0 \ γ1 and,
traversing γ0 in one direction starting at s, let p1, p2, p3 be the first three
points of γ0 ∩ γ1 encountered.

Let A be the arc obtained by starting at s, continuing along γ0 through
p1 to p2 and then following γ1 \ {p1} through p3 to a point t just beyond p3.
The decomposition of A is α0α1, with, for i = 1, 2, αi ( A ∩ γi. Since every
arc in P (Γ) with weight at most 1 is a spiral, A is a spiral. The fact that the
points p2 and p3 of γ0 ∩ γ1 are consecutive in γ0 imply that α+

0 is coherent.
On the other hand, the sp2-subarc of A intersects the p1p2-subarc of

γ1 \ {p3} just in {p1, p2}. This shows that α−1 is coherent, completing the
proof that A is coherent, the required contradiction.

(2.3.1) ⇒ (2.3.2). To obtain a contradiction, suppose A is a coherent
spiral with least weight. An arc with weight 0 is not coherent, so the decom-
position α0α1 · · ·αm of A has m ≥ 1.

The first claim imposes constraints on what happens at points “under” a
forward jump such as, in Figure 4, ×2 under α+

0 . For an extension αε
i of αi,

aεi denotes the other end of αε
i .
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Claim 1. Suppose that α+
j is a coherent extension of αj. If there is an

` ≥ j + 2 such that a+j is in α` \ {×`}, then:

1. for each i = j + 2, j + 3, . . . , `, α−i is disjoint from α+
j \ {a+j }; and

2. either: for some i ∈ {j + 2, j + 3, . . . , `}, a+j ∈ α−i ; or α+
j+1 intersects

α+
j .

Likewise, suppose α−j is a coherent extension of αj. If there is an ` ≤ j−2
such that a−j is in α` \ {×`+1}, then:

3. for each i = `, `+ 1, . . . , j − 2, α+
i is disjoint from α−j \ {a−j }; and

4. either: for some i ∈ {`, ` − 1, . . . , j − 2}, a−j ∈ α+
i ; or α−j−1 intersects

α−j .

Proof. We prove the first statement; the “likewise” is the same, but for the
traversal of A in the reverse direction.

By way of contradiction, suppose first that, for some i ∈ {j + 2, j +
3, . . . , `}, α−i intersects α+

j \ {a+j }; let ×i−, j+ be the first intersection with α+
j

as we traverse α−i from ×i. The interior of the subarc α−i [×i,×i−, j+ ] of α−i
from ×i to ×i−, j+ is on the side of the unique simple closed curve contained
in A ∪ α+

j that is opposite to the side that contains A[s,×j+1].
See Figure 6 for an illustration of this proof.

αj αj+1 α`

α+
j

a+j

αi

α∗
j α∗

i

Figure 6: Illustration for the proof of Claim 1. (Color online.)

Let α∗j be the subarc of γj consisting of αj and the portion of α+
j from

×j+1 to ×i−, j+ . Likewise, let α∗i be the subarc of γi consisting of αi and
α−i [×i,×i−, j+ ]. The arc A′ with decomposition α0 . . . αj−1α

∗
jα
∗
iαi+1 . . . αm has

smaller weight than A. Also, even if ×i−, j+ = ×j+1, A
′ is a spiral. (In case

×i−, j+ = ×j+1, then γj, γj+1, and γi all cross at ×j+1. This ensures that
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the cyclic rotation of these three curves at ×j+1 is αj, αj+1, α
−
i , α

+
j , α

−
j+1, βi,

where βi is the continuation of γi from a−i = ×i−, j+ .)
To see that A′ is coherent, first let C be the simple closed curve (α∗j \

αj) ∪ (α∗i \ αi) ∪ A[×j+1,×i]. For each of the segments α′ of A′, α′ contains
some segment αk of A. Let αε

k be a coherent extension of αk for A. Follow
αε
k from its end in αk (or, if k ∈ {j, i}, from ×i−, j+). If we never encounter C,

then we arrive at A′ on the same side. On the other hand, if we encounter
C, it is not at a point in A and so it is in (α∗j \ αj) ∪ (α∗i \ αi).

Label as the outside of C the side of C containing A[s,×j+1]. Since αε
k

starts on the outside of C, its first intersection with C is from that side.
Thus, the portion of αε

k up to that first intersection with C is a coherent
extension of α′, as required.

To complete the proof that A′ is coherent, we note that, if, for the segment
α of A′, both α− and α+ are coherent, then they are contained in coherent
extensions of the corresponding segment of A. Since these extensions for
A are distinct, as extensions for A′ they are also distinct. Thus, there is a
coherent spiral with weight less than m, a contradiction.

For (2), if, for each i = `, `+1, . . . , j−1, a+j /∈ α−i and α+
j+1 is disjoint from

α+
j , then α+

j+1 and (using (1)) each α−i is a coherent extension in A[×j+1, a
+
j ].

The same argument as in the preceding paragraph shows that A[×j+1, a
+
j ] is

a coherent spiral with smaller weight than A, a contradiction. 2

The next claim considers “reverse” coherent extensions. This claim rules
out the possibility of an extension such as α−3 in Figure 4.

Claim 2. There do not exist j, ` ∈ {0, 1, 2, . . . ,m} such that ` < j and α+
j

is a coherent extension with an end in α`.
Likewise, there do not exist j, ` ∈ {0, 1, 2, . . . ,m} such that j < ` and α−j

is a coherent extension with an end in α`.

Proof. We only prove the first statement. Choose the least j for which such
an ` < j exists. Suppose first that a+j ∈ αj−1. Thus, γj−1 ∩ γj ⊇ {a+j ,×j}.
Because α+

j 6= α−j , a+j 6= ×j. Thus, Hypothesis (2.3.1) implies γj−1 ∩ γj =
{a+j ,×j}. Let C be the simple closed curve contained in αj−1 ∪ αj ∪ α+

j .
Except for ×j, α

+
j−1 is disjoint from C.

Note that a+j−1 is not in αj−1 ∪ αj. Therefore, a+j−1 and the start of α+
j−1

from ×j are on different sides of C, which is impossible. Thus, a+j /∈ αj−1.
The choice of j implies that either α+

j−1 is not coherent or it does not
intersect A[a+j ,×j]. Therefore, α+

j−1 must intersect αj ∪ α+
j at a point other
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than ×j. This gives the two crossings of γj−1 with γj.
An intersection of α−j−1 with γj yields a third intersection of γj−1 with

γj, and the theorem is proved. Therefore, we assume α−j−1 is disjoint from
α−j . On the other hand, the choice of j implies that, for each k with ×k+1 in
the interior of A[a−j ,×j], a

+
k 6= a−j . Therefore Claim 1 (4) shows α−j−1 is not

disjoint from α−j , the final contradiction. 2

We may now suppose that there does not exist an α+
j that is a coherent

extension with an end in any αk such that k < j. Similarly, we may assume
that there does not exist an α−j that is a coherent extension with any end in
any αk such that k > j.

The final claim combines the first two to completely determine the nature
of a coherent extension. Before we get to it, we require one more detail.

Claim 3. Let k ∈ {1, 2 . . . ,m}. Suppose α−k−1 is not a coherent extension
and that γk \ α−k has an intersection with γk−1. Then α−k is not coherent.

Likewise, if α+
k is not coherent and γk−1 \ α+

k−1 has an intersection with
γk, then α+

k−1 is not coherent.

Proof. We only prove the first statement. Because A is coherent and α−k−1
is not a coherent extension, α+

k−1 is a coherent extension of αk−1. Let × be
the intersection of γk \ α−k with γk−1; it follows that γk−1 ∩ γk ⊇ {×k,×}.
Since × /∈ α−k , × is neither ×k nor a−k . Hypothesis (2.3.1) implies γk−1∩γk =
{×k,×}.

Since α−k \ {×k} is disjoint from γk−1; in particular, it is disjoint from
αk−1. For k = 1, the preceding claim implies that α−k is not coherent. Thus,
we suppose k ≥ 2.

The union of α−k−1 and A[×k−1, a
−
k−1] is a simple closed curve C. Let

p be a point of α−k near ×k. From p trace an arc δ alongside αk−1, across
α−k−1 and, continuing beside A, on to a point near the end ×0 of A. Thus,
δ is along the side of A faced by all the ×i. Because α−k−1 is not coherent,
it does not return to A on this side and, therefore, δ crosses α−k−1 only once.
Consequently, δ crosses C only once.

Suppose by way of contradiction that α−k is a coherent extension of αk.
Because α−k does not intersect γk−1 \ {×k}, it cannot cross C. Therefore, it
does not intersect the portion of δ from its crossing with α−k−1 to its end near
×0. In particular, α−k has no end in α0α1 · · ·αk−2. The first paragraph shows
α−k is also disjoint from αk−1 \ {×k}. Thus, a−k is in A[×k+1, t], contradicting
the preceding claim. 2
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We are now ready to get the fine detail of the coherent extensions of A.

Claim 4. For 0 ≤ j ≤ m − 1, if α+
j is a coherent extension of αj, then

a+j ∈ αj+1.
Likewise, for 1 ≤ j ≤ m, if α−j is a coherent extension of αj, then

a−j ∈ αj−1.

Proof. We only prove the first statement. Suppose that j is least such that
α+
j is a coherent extension of αj and a+j /∈ αj+1. We show by induction that,

for each k = 0, 1, . . . , j, α−k is not a coherent extension of αk. For k = 0,
Remark 2.2 shows that α−0 is not a coherent extension of α0. Now let k ≥ 1
and suppose that α−k−1 is not a coherent extension of αk−1.

Since A is coherent and α−k−1 is not a coherent extension of αk−1, we have
that α+

k−1 is a coherent extension of αk−1. By the choice of j, a+k−1 ∈ αk. The
preceding claim implies that α−k is not a coherent extension of αk, completing
the proof that, for each k = 0, 1, . . . , j, α−k is not a coherent extension of αk.

Let ` be such that a+j ∈ α` \ {×`}. The second claim and the choice
of j show that ` > j + 1. Part (1) of the first claim implies that, for each
i = j + 2, j + 3, . . . , `, α−i is disjoint from α+

j \ {a+j }, while the second claim
asserts that a+j /∈ α−i . Part (2) of the first claim now implies that α+

j+1

intersects α+
j at a point q.

We showed that α−j is not a coherent extension of αj and that α+
j+1 inter-

sects γj at ×j+1 and q. Consequently, the coherence of A and the preceding
claim show that α+

j+1 is a coherent extension. The second claim shows that,
for some r > j + 1, a+j+1 ∈ αr \ {×r}. The first two claims show that, for
each i = j + 3, j + 4, . . . , r, α−i is disjoint from α+

j+1.
Let α∗` be the subarc α`[×`, a

+
j ] and let A′ be the arc consisting of αj+1,

αj+2, . . . , α`−1, α
∗
` . Just above, we showed that α−j+2 is disjoint from α+

j .
Therefore, α−j+2 is a coherent extension of αj+2 with respect to A′. The
second claim shows that α−j+2 has both ends in αj+1.

Since α−j+2 intersects αj+1 in ×j+2 and a−j+2, we see that a+j+1 /∈ αj+2;
therefore r > j + 2. Moreover, it follows that α+

j+2 is disjoint from α+
j+1.

This, together with the fact that, for each i = j + 3, j + 4, . . . , r, α−i is
disjoint from α+

j+1, contradicts the first claim. 2

Because A is coherent and Remark 2.2 shows α−0 is not a coherent ex-
tension of α0, α

+
0 is a coherent extension of α0. Likewise, α−m is a coherent

extension of αm. It follows that there is a j ≥ 1 such that α+
j−1 is a coherent

extension of αj−1 and α−j is a coherent extension of αj. The fourth claim
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implies that both ends of α+
j−1 are in αj and both ends of α−j are in αj−1.

This implies that |γj−1∩γj| ≥ 3, completing the proof that (2.3.1)⇒ (2.3.2).
(2.3.2) ⇒ (2.3.4). For this argument, we will make use of the following

trivial observation.

Observation 2.4. Let Q,R, S be arcs in the sphere such that R and S both
have their ends in Q, but otherwise are disjoint from Q. We assume R and
S have finitely many intersections and these are all crossings.

Assume that short subarcs of S starting at each end of S are on different
sides of the unique simple closed curve in R ∪ Q. Then (R ∩ S) \ Q has at
least one point.

By way of contradiction, let A be a least-weight spiral in P (Γ) having
no segment external for A. Since the only segment in an arc of weight 0
is external for that arc, A has positive weight m. Let α0α1 · · ·αm be the
decomposition of A.

By assumption, A is incoherent; let αi be an incoherent segment of A.
By definition, both α−i and α+

i are both incoherent extensions. Thus, short
subarcs near their ends a−i and a+i are on the side of A that is opposite the
side faced by all the crossings ×1, . . . ,×m. We remark that one or both of
a−i and a+i might be in {×0,×m+1}. If i = 0, then only the subarc near a+0
is forced by incoherence to be on the side of A not faced by the crossings;
the fact that γ0 is a simple closed curve implies a−0 is as well. An analogous
statement applies if i = m.

As we traverse A from ×0 to ×m+1, we first encounter a−i and then
a+i (these could be equal). Therefore, either a−i ∈ α0α1 · · ·αi−1 or a+i ∈
αi+1αi+2 · · ·αm. As these are symmetric up to reversal of A, we assume the
latter.

Let B be the spiral αi+1αi+2 · · ·αm; evidently, its weight is less than that
of A. Therefore, B has a segment αj that is external for B. Notice that the
side of B faced by all its crossings is separated from A[×0,×i+1] \ {×i+1} by
the simple closed curve A[×i+1, a

+
i ] ∪ α+

i .
Since no segment of A is external for A, γj intersects A at a point out-

side αj. This implies that α−j and α+
j intersect A at points a−j and a+j ,

respectively, that are not in αj. Since αj is external for B, a−j and a+j are
in A \B.

Claim 5. Traversing α−j and α+
j from ×j and ×j+1, respectively, they each

have an intersection with α+
i and these intersections are distinct points of α+

i .
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Proof. In an extreme case, j = i + 1; here ×i+1 is the required common
point between α−j and α+

i . In the other extreme case, a+i = ×m+1 and j = m;
here ×m+1 is the common point between α+

j and α+
i . (These could happen

simultaneously.) Otherwise, ×j and ×j+1 are interior points of B.
If we take Q = A, R = α+

i and S to be either α−j or α+
j , then Observation

2.4 implies there are distinct points, one in each of (α−i ∩ α+
j ) \A and (α+

i ∩
α+
j ) \ A. 2

Since |γi ∩ γj| ≤ 2, the only points in γi ∩ γj are the points in each of
α−j ∩ α+

i and α+
j ∩ α+

i . In particular, α−j and α+
j are both disjoint from

α−i \ {a−i }.
Because a−j /∈ B and α−j is disjoint from α−i \ {a−i }, a−j ∈ A[×0,×i]. On

the other hand, the disjointness of α−j with α−i \ {a−i } implies that a−i is
not further from ×0 in A than a−j is. In turn, this implies that a−i is in
A[×0,×i]\{×i}. Therefore, reversing the direction of traversal of A, α−i may
play the role of α+

i in the preceding argument.
Thus, there is a k ∈ {0, 1, . . . , i − 1} such that αk is a segment of

α0α1 · · ·αi−1, external for α0α1 · · ·αi−1, but not external for A. The ar-
gument above for α+

i and αj applies to α−i and αk. Thus, α−k and α+
k have

their endpoints a−k and a+k , respectively, in A[×i+1,×m+1] \ {×i+1}. Obser-
vation 2.4 implies that each of α−j and α+

j has an intersection with each of
α−k and α+

k . In particular, γj ∩ γk has at least four points. This contradicts
(2.3.1), which is equivalent to (2.3.2).

3 A pseudocircle transversal

We recall that the proof of Theorem 1.1 has two parts. For our current set
Γ of pairwise intersecting pseudocircles, we must (i) find a pair of initial
approximations to the pseudocircle for the next edge and (ii) show that the
pair of approximations imply the existence of the desired curve crossing all
the curves in Γ. In this section, our focus is on the second of these parts.

In particular, in Section 6, we will show how to find two initial approx-
imations that together intersect all the curves in our current Γ. The main
result of this section is to use these two approximations to find the single
curve that intersects all the curves in Γ.

We are reminded of the theorems that are:
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• Helly-type: if a collection of sets is such that every k of the sets admits a
transversal, then the whole collection admits a transversal; and

• Gallai-type: if a collection of sets is such that every k of the sets admits a
transversal, then the whole admits a small set of partial transversals whose
union is a transversal.

Our theorem has the following different character: if a collection of sets
admits a small set of partial transversals whose union is a transversal, then
it admits a transversal. We do not know of another example of this type of
theorem.

Definition 3.1. Let Γ be an arrangement of pseudocircles.

• A set Λ of simple closed curves is a Γ-transversal if every curve in Γ
intersects at least one of the curves in Λ.

• A simple closed curve γ is a Γ-pseudocircle if Γ∪{γ} is an arrangement
of pseudocircles.

Theorem 3.2. Let Γ be an arrangement of pseudocircles. Let γ1 and γ2
Γ-pseudocircles such that {γ1, γ2} is a Γ-transversal. Suppose

(3.2.1) γ1 ∩ γ2 is a non-trivial arc and

(3.2.2) if δ1, δ2 ∈ Γ are such that δ1 ∩ γ1 = ∅ and δ2 ∩ γ2 = ∅, then
δ1 ∩ δ2 6= ∅.

Then there exists a Γ-pseudocircle γ containing γ1 ∩ γ2 and γ \ (γ1 ∩ γ2) is
contained in the closure of the face F of γ1 ∪ γ2 not incident with γ1 ∩ γ2.

Our proof shows that one can sweep either of γ1 or γ2 to the required γ.
In their classic paper [25], Snoeyink and Hershberger show how to sweep one
curve through the others in an arrangement of pseudoarcs and pseudocircles.
In particular, up to sweeping, γ is unique.

In the proof of Theorem 1.1, any two curves in the current Γ intersect,
so Hypothesis (3.2.2) holds automatically.

Proof of Theorem 3.2. Let σ = γ1 ∩ γ2 and, for i = 1, 2, let

Γi = {δ ∈ Γ : δ ∩ γi 6= ∅} .
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Because {γ1, γ2} is a Γ-transversal, Γ1 ∪ Γ2 = Γ. Let n = n(Γ, γ1, γ2) =
|Γ2 \Γ1|. Define k = k(Γ, γ1, γ2) as the number of crossings in P (Γ) included
in the face F of γ1 ∪ γ2 not incident with σ. We proceed by induction on
n+ k.

We can assume that neither Γ1 \ Γ2 nor Γ2 \ Γ1 is empty, else we pick γ
to be either equal to γ2 or γ1.

If there is an arc α of some δ ∈ Γ2 \ Γ1 incident with a face of P (Γ ∪
{γ1, γ2}) that is included in F and incident with γ1, then by shifting some
part of γ1 to cross α via a Reidemeister Type II move, we obtain a curve
γ′1 such that the pair (γ′1, γ2) satisfies the same hypothesis as (γ1, γ2). Since
n(Γ, γ′1, γ2) + k(Γ, γ′1, γ2) < n(Γ, γ′1, γ2) + k(Γ, γ′1, γ2), the result follows by
induction.

In the alternative, there exists an arc A with ends in γ2 \σ, but otherwise
contained in F ∩P (Γ1 ∪{γ1}), such that γ2 ∪A separates γ1 \ σ from P (Γ2 \
Γ1) ∩ F . Let ∆A be the closure of the component of F \ A that is incident
with both A and γ1 \ σ. Among the finitely many choices for A, we choose
A so that ∆A is minimal under inclusion. See Figure 7.

γ1
∆A

A

γ2
B

σ

δ

α

Figure 7: The region ∆A.

We apply Theorem 2.3, specifically (2.3.1) ⇒ (2.3.2), to see that there
is a crossing in A facing ∆A. The proof is by contradiction, assuming that
every crossing faces the other side of A. In particular, A is a spiral; the
contradiction arises from the following.

Claim 1. There is a crossing in A facing ∆A.

Proof. By way of contradiction, suppose every crossing faces the other side
of A; in particular, A is a spiral. We show that A is coherent, contradicting

19



Theorem 2.3 (specifically, (2.3.1) ⇒ (2.3.2)). It suffices to show that if α is
an arc in the decomposition of A, then α is coherent. Let δ be the curve in
Γ1 containing α.

Let B be the closed arc in γ2 \σ such that A∪B is a simple closed curve.
Consider the continuation of δ from one end of α. Since δ crosses γ1 twice,
the continuation must eventually reach γ1; in particular, it must have a first
intersection with A ∪B.

We show below that it is impossible for both continuations to have these
first intersections in B. Therefore, for one of them, the first intersection is
in the interior of A, showing that α is coherent.

So suppose both continuations intersect B for the first time at p1 and p2.
Since |γ2 ∩ δ| ≤ 2, γ2 ∩ δ = {p1, p2}. Therefore, δ is contained in the region
bounded by A ∪ (γ2 \ B) and intersects the boundary of this region only at
α. This shows that δ /∈ Γ1, the required contradiction. 2

Claim 2. Let δ ∈ Γ. Then every arc in δ ∩∆A has one end in the interior
of γ1 \ σ and one end not in the interior of γ1 \ σ.

Proof. Let β be an arc δ∩∆A. If β has no end in γ1 \σ, then β∪A contains
an arc A′ that separates γ1 \ σ from P (Γ2) ∩ F such that ∆A′ is properly
contained in ∆A, contradicting the choice of A.

If β has no end in the complement of the interior of γ1\σ in the boundary
of ∆A, then β is contained in ∆A and has both ends in the interior of γ1 \ σ.
Since δ∩γ1 has exactly two points, these are the two ends of β. The preceding
paragraph shows that β is the only arc in δ∩∆A, and hence δ \β is included
in the side of γ1 disjoint from γ2 \σ. Thus, for any δ′ ∈ Γ2 \Γ1, since δ′∩∆A

and δ′ ∩ γ1 are empty, this implies that δ ∩ δ′ = ∅, contradicting (3.2.2). 2

Claim 1 implies there are distinct elements δ, δ′ of Γ1 that have a crossing
× in A through which they proceed into the ∆A-side of A. Claim 2 shows
both extensions from this crossing are arcs ρ and ρ′ in δ and δ′, respectively,
joining × to their ends a and a′, respectively, in the interior of γ1 \ σ. All
intersections of δ and δ′ with γ1 are crossings, so this is true in particular for
a and a′.

Since ρ and ρ′ cross at ×, they have at most one other crossing. Let ×∗ be
that other crossing if it exists; otherwise ×∗ is ×. The union of the subarcs
of ρ from a to ×∗, ρ′ from a′ to ×∗, and γ1 \ σ from a to a′ is a simple closed
curve λ in the closed disc ∆A.
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We aim to show that the interiors of the arcs ρ ∩ λ and ρ′ ∩ λ are not
crossed by any curve in Γ. If not, then there is a µ ∈ Γ that crosses, say,
ρ ∩ λ. By Claim 2, the component of µ ∩∆A containing this crossing has a
subarc µ′ with one end in ρ and one end in the interior of A. We may assume
µ′ has no other intersection with ρ.

There is an arc A′ 6= A in A∪ µ′ ∪ ρe that separates the interior of γ1 \ σ
from P (Γ2) ∩ F . However, ∆A′ is a proper subset of ∆A. This contradiction
shows that no curve in Γ intersects either ρ ∩ λ or ρ′ ∩ λ.

It follows that we can perform the equivalent of a Reidemeister III move
to shift the portion of γ1 between a and a′ across ×∗. (It is possible that
a = a′. In this case, we still do the Reidemeister III move, starting by
shifting γ1 into the face bounded by λ. In the context of Theorem 1.1, this
actually does not occur.) If γ′1 is the resulting curve, then n′(Γ, γ′1, γ2) = n,
k′(Γ, γ′1, γ2) = k − 1, and hence the result follows from the induction.

4 h-Convex and pseudospherical drawings

In this section we introduce h-convex drawings and prove the easy implication
(1.1.2)⇒ (1.1.3).

The following notions were introduced by Arroyo et al. [12]. (Here, for
a drawing D of a graph G, if T is a subgraph of D, then D[T ] denotes the
subdrawing of D induced by T . If T is just an edge e and its ends or has
vertex set S and no edges, then we write simply D[e] or D[S], respectively.)

Definition 4.1. Let D be a drawing in the sphere of the complete graph
Kn in which any two edges have at most one point in common and that this
point, if it exists, is either a common incident vertex or a crossing point.

(4.1.1) Let T be a 3-cycle in Kn. A closed disc ∆ bounded by D[T ]
is a convex side of D[T ] if, for every two vertices x, y such that
D[{x, y}] ⊆ ∆, then D[xy] ⊆ ∆.

(4.1.2) The drawing D is convex if, for every 3-cycle T in Kn, D[T ] has
a convex side.

(4.1.3) If D is convex, then D is h-convex (short for “hereditarily con-
vex”) if there is a set C consisting of, for every 3-cycle T of Kn, a
convex side ∆T such that, for two 3-cycles T, T ′, if D[T ] ⊆ ∆T ′ ,
then ∆T ⊆ ∆T ′ .
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(4.1.4) The drawing D is f-convex (short for “face convex”) if there is a
face F of D[Kn] such that, for every 3-cycle T of Kn, the closed
disc ∆T bounded by D[T ] and disjoint from F is convex.

A pseudolinear drawing of Kn in the plane is evidently homeomorphic to
an f-convex drawing in the sphere. The converse is proved in [10]: taking a
witnessing face of an f-convex drawing of Kn in the sphere to be the outer
face yields a pseudolinear drawing of Kn in the plane.

Arrangements of pseudolines naturally correspond to rank 3 oriented ma-
troids [13, Def. 5.3.1]. Theorem 1.1 shows that an h-convex drawing of Kn

is also equivalent by Reidemeister III moves to a rank 3 oriented matroid.
Clearly f-convex drawings are h-convex and h-convex drawings are con-

vex. Evidence is given in [12] to support the conjecture that every crossing-
minimal drawing of Kn is convex. A polynomial-time algorithm recognizing
h-convexity follows from their result that a drawing of Kn is h-convex if and
only if it does not contain as a subdrawing any of the three drawings (two of
K5 and one of K6) shown in Figure 8. We do not need this result here and
there is little overlap of this work with [12].

Ábrego et al [6, Sec. 4.3, 4.4] show that every crossing-minimal 2-page
drawing D of Kn has, up to symmetry, a certain matrix representation of D.
It is assumed that the spine of the drawing is the x-axis and each edge is
drawn either in the closed upper half plane H+ having y ≥ 0 or in the closed
lower half plane H− having y ≤ 0. For n even, they show there is a unique
such drawing, while for n odd, there are some options.

For n even, it is quite straightforward to verify convexity and h-convexity
of D by choosing a particular side of each 3-cycle xyz. If all three of xy, xz, yz
are in the same one of H+ and H−, then the convex side of xyz is the bounded
side of xyz. If xy and yz are in, say, H+ but xz is not, then there are two
cases. If y—the vertex incident with both H+-edges—is in the middle of
x, y, z in the linear order on S, then the unbounded side of xyz is the convex
side. Otherwise, y is an end of the ordering of x, y, z on S and the bounded
side is the convex side.

The verification of convexity is very simple; h-convexity requires some
additional thinking. Since it is outside the scope of this work, we omit these
discussions. Moreover, for n odd, it is not at all obvious that our arguments
hold. In the case n is odd, the locations of some edges are not determined
in [6]. We expect to be able to provide a detailed analysis of this case in a
separate note, which would also include the analysis above for n even.
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Figure 8: The three obstructions for h-convexity.

Our principal goal is to prove Theorem 1.1. As mentioned in the intro-
duction, the implication (1.1.1) ⇒ (1.1.2) is trivial. To see the implication
(1.1.2)⇒ (1.1.3), let e, f , and g be the three edges of a 3-cycle T , contained
in pseudocircles γe, γf , and γg, respectively. For each x ∈ {e, f}, (PS3) shows
that the open arc γx \D[x] is contained in one of the two open sides of D[T ].
Since the γx cross at their common vertices, it follows that one open side of
D[T ] is disjoint from all of γe, γf , and γg; we set ∆T to be the closure of this
side of D[T ].

To see that ∆T is convex, let u, v be vertices in ∆T . Then u and v are on
the same side of each of γe, γf , and γg and so (PS3) shows uv does not cross
any of γe, γf , and γg. In particular, uv does not cross D[T ], so ∆T is indeed
convex.

For h-convexity, suppose a second 3-cycle uvw is drawn in ∆T . Then
(PS2) shows that, for example, γuv must cross each of γe, γf , and γg. There-
fore, the side of D[uvw] contained in ∆T is ∆uvw, as required.

The proof of the remaining implication in Theorem 1.1 is given in Section
6. Section 5 provides the necessary discussion of h-convex drawings required
to obtain an appropriate initial approximation of the simple closed curve for
the “next” edge of Kn to extend a (partial) collection of curves satisfying
(PS1)–(PS3).

5 h-convex drawings

Our main goal now is to prove the remaining part of Theorem 1.1: an h-
convex drawing of Kn extends to simple closed curves that satisfy (PS1),
(PS2), and (PS3). The proof, given in the next section, requires three facts
about h-convex drawings of Kn: Lemmas 5.2, 5.3, and 5.4 below. The latter
two are straightforward consequences of the first. However, the proof of the
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first is elucidated in this section through a fairly long series of lemmas.
The reader may skip the proof of Lemma 5.2 in order to proceed directly

to the proof of Theorem 1.1.

Notation 5.1. Let D be an h-convex drawing of Kn and let C be a particular
choice of convex sides of the 3-cycles witnessing the h-convexity of D as in
Definition (4.1.3). Let e be any edge of Kn with an arbitrary orientation
from one end of e to the other.

(HC1) Set Σ1
e to be the set of all vertices v of Kn not incident with e such

that the side in C of the 3-cycle containing v and e is the left side,
relative to the given orientation of e. The remaining vertices not
incident with e have their convex side that is in C relative to e on
the right and they make up Σ2

e.

(HC2) For i = 1, 2, we set Di
e to be the subdrawing of D of the complete

subgraph induced by Σi
e and the ends of e.

Our next lemma is the main point of this section. Its proof follows its
two straightforward consequences.

Lemma 5.2. Let D be an h-convex drawing of Kn with a specified witnessing
set of convex sides. For i = 1, 2, if Σi

e is not empty, then there is a closed
disc ∆i

e containing Di
e and bounded by a cycle Ci

e of Kn containing e and
whose vertices are otherwise contained in Σi

e. Furthermore, ∆1
e ∩∆2

e consists
of D[e] and its ends.

C1
e C2

ee

∆1
e ∆2

e

Figure 9: Illustrating the consequence of Lemma 5.2.

Figure 5 illustrates the conclusion of Lemma 5.2. Before the proof, we
give two simple consequences, which are also used in the next section.

The first simple consequence is about edges not in either ∆1
e or ∆2

e. Recall
that S2 denotes the sphere. For e ∈ E(Kn), set Fe = S2 \ (∆1

e ∪∆2
e).
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Lemma 5.3. Let D be an h-convex drawing of Kn with a specified witnessing
set of convex sides and e and e′ be distinct edges of Kn. If D[e′] has a point
in Fe, then e′ has an end in each of Σ1

e and Σ2
e.

Proof. Let u and v be the ends of e. We prove the contrapositive. Suppose
that for some k ∈ {1, 2}, e′ has both ends in {u, v} ∪ Σk

e . Then D[e′] is
contained in ∆k

e by Lemma 5.2, so D[e′] ∩ Fe = ∅.

We need some notation for the next lemma. For distinct edges e, e′ of
Kn, label each vertex of C1

e (from Lemma 5.2) with 1, 2, 3, respectively, to
indicate it is in Σ1

e′ , in Σ2
e′ , or incident with e′.

Lemma 5.4. Suppose D is an h-convex drawing of Kn with a specified wit-
nessing set of convex sides, e, e′ edges of Kn, and the labelling of C1

e as in
the preceding sentence. Then there is no 1, 2, 1, 2 pattern in the cyclic order
around C1

e .

Proof. Otherwise, there are four vertices v1, v2, v3, v4 of C1
e in this cyclic

order with v1, v3 having label 1 and v2, v4 having label 2. As all vi are in Σ1
e,

the definition of C1
e implies v1v3 crosses v2v4 in D1

e .
However, the edge v1v3 is in D1

e′ , while v2v4 is in D2
e′ . Lemma 5.3 shows

that both v1v3 and v2v4 are contained in ∆1
e, so they cross in D. However,

Lemma 5.2 implies they do not cross, a contradiction.

The remainder of this section is devoted to the proof of Lemma 5.2. In
the arguments below, we will use, without particular reference, the following
observation: if e and f are crossing edges, then each of the four 3-cycles in
the unique K4 containing e and f has a side (the one containing the fourth
vertex of the K4) that is definitely not convex. Our drawings are convex,
so, for such a 3-cycle, the convex side that is in C is determined. If C is the
4-cycle bounding a face of this K4, then the closed disc bounded by D[C]
and containing D[{e, f}] is the crossing side of D[C].

Lemma 5.5. Let D be an h-convex drawing of Kn with a specified witnessing
set of convex sides, and let e be an edge of Kn. Let i ∈ {1, 2} and suppose
|Σi

e| ≥ 1.

(i) In Di
e, e is not crossed. In particular, there is a face F i

e of Di
e incident

with e and containing Σ
(3−i)
e .
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(ii) If J is any crossing K4 in Di
e, then F i

e is contained in the face of D[J ]
bounded by a 4-cycle. In particular, no crossing of Di

e is incident with
F i
e , so F i

e is bounded by a cycle in Di
e.

Proof. If e were crossed by an edge f in Di
e, then the crossing K4 shows that

the two ends of f are not both in the same one of Σ1
e and Σ2

e, a contradiction.
Thus, e is not crossed and is incident with exactly two faces of Di

e; F
i
e is the

one containing Σ
(3−i)
e , completing (i).

For (ii), let C be the 4-cycle in J bounding a face of D[J ]. We rule out
one trivial case immediately. If e is in J , then, since e is not crossed in Di

e, it
is in C. The convex sides (these are unique and in C) of each 3-cycle in J are
all on the crossing side of D[C]. Since the two vertices of J not incident with
e are in Σi

e, F
i
e is contained in the face of D[J ] bounded by C, as required.

Therefore, we may assume there is a vertex u incident with e and not in
J . As e is not crossed in Di

e, D[e] is contained in one of the faces F of D[J ].
Since D[u] is incident with F i

e , F is also the face of D[J ] containing F i
e .

We are done if F is bounded by a 4-cycle in J , so we assume, by way of
contradiction, that F is incident with the crossing of D[J ].

Convexity implies that the edges joining u to the vertices of J are all
contained on the crossing side of D[C]. Thus, C, u, and these four edges
constitute a planar embedding of the 4-wheel W . Each of the four 3-cycles
in W has its convex side on the crossing side of D[C]: three of these 3-cycles
are contained in convex sides of 3-cycles of J , so for them the assertion follows
from h-convexity; the fourth is in a crossing K4 on the crossing side of D[C].

If e is one of the edges of W , then the end of e different from u has two
neighbours in C that are in different ones of Σ1

e and Σ2
e, a contradiction. If e

is not in W , then its other end v is in one of the four faces of D[W ] incident
with u. This implies that v is on the convex side of the bounding 3-cycle
and the two vertices of C in this 3-cycle are in different ones of Σ1

e and Σ2
e,

a contradiction.

For i = 1, 2, if Σi
e 6= ∅, then let Ci

e be the cycle in Di
e that is the boundary

of F i
e . All its vertices not incident with e are, by definition, in Σi

e. Note that,
with Fe as defined preceding Lemma 5.3, Fe = F 1

e ∩ F 2
e .

We are aiming to show that, for any three vertices in Di
e, the specified

convex side that they bound is contained in the side of D[Ci
e] not containing

F i
e . In particular, this shows that Di

e is f-convex. This is our next lemma.
We remark that the main result of [10] further implies that Di

e is pseudo-
linear. Thus, any edge e of an h-convex drawing partitions the vertices into
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two pseudolinear subdrawings D1
e and D2

e . This generalizes the fact that, in a
spherical drawing, for each great circle C that contains an edge, the vertices
in either closed side of C induce a rectilinear drawing.

Lemma 5.6. Let D be an h-convex drawing of Kn with witnessing set {∆T |
T is a 3-cycle of Kn} of convex sides. Let e be an edge of Kn and let i ∈
{1, 2}. With Di

e as in Notation 5.1, if |Σi
e| ≥ 1, then, for each 3-cycle T in

Di
e, ∆T ∩ F i

e = ∅. In particular, Di
e is f-convex.

Proof. Let uvw be a 3-cycle in Di
e. Suppose first that there is an edge f

with both ends in Ci
e that crosses uvw. If f has one end in uvw, then Lemma

5.5 (ii) shows the crossing in the K4 that includes u, v, w, and f is separated
from F i

e by the face-boundary 4-cycle in the K4. Therefore, the convex side
of each of the four 3-cycles in the K4 is the side that is disjoint from F i

e . In
particular, this holds for uvw, as required.

In the remaining case, both vertices incident with f are in the side of uvw
that contains F i

e . In this case, Definition 4.1 (4.1.1) of convex side shows
it is the other side, the one disjoint from F i

e , that is convex, as required.
Therefore, we can assume no edge having both ends in Ci

e crosses uvw.
Suppose that Ci

e has at least four vertices and let a and b be any two
vertices of Ci

e, neither of which is an end of e, and consider the K4 containing
a, b, and e. As a, b, and e are all incident with F i

e , this K4 has a face incident
with all four of its vertices. It follows that this is a crossing K4. Lemma 5.5
implies that the crossing in this K4 is separated from F i

e by the face-bounding
4-cycle. Thus, all the 3-cycles in this K4 have their convex side disjoint from
F i
e . Although this was already known for the two 3-cycles containing e, we

now know it for the two 3-cycles containing the edge ab.
Finally, if Ci

e has only three vertices, then the result follows from h-
convexity. Otherwise, let y be one of the ends of e and consider Ci

e together
with all the chords from y. By the preceding paragraph, all of the 3-cycles
using two of these edges incident with y and an edge of Ci

e have their convex
side disjoint from F i

e . From the earlier discussion, none of these chords crosses
uvw. It follows that uvw is contained in the convex side of one of them; this
convex side is disjoint from F i

e . Thus, the chosen convex side for uvw is, by
h-convexity, disjoint from F i

e .

The remaining detail about h-convex drawings we need is that D1
e ⊆ F 2

e

and D2
e ⊆ F 1

e . As mentioned after the proof Lemma 5.5, Ci
e is the boundary
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of the face F i
e of Di

e. The other closed disc in the sphere bounded by D[Ci
e] is

denoted ∆i
e. Evidently, D[Σi

e] ⊆ ∆i
e. We begin by showing that Σ2

e∩∆1
e = ∅.

Lemma 5.7. Let D be an h-convex drawing of Kn with a specified witnessing
set of convex sides. Let e = uv be an edge of Kn and i ∈ {1, 2}, and let Σi

e

and Di
e be as in Notation 5.1. For w ∈ V (G) \ {u, v}, if D[w] ⊆ ∆i

e, then
w ∈ Σi

e.

Proof. Suppose that D[w] ⊆ ∆1
e. If C1

e is a 3-cycle, then its convex side
∆1

e contains w; h-convexity implies that the 3-cycle including w and e is
contained in ∆1

e, and hence w ∈ Σ1
e. Thus, we may assume that C1

e has
length at least 4.

For each edge ab ∈ C1
e − e, let Jab denote the crossing K4 in D induced

by e and ab. The closed disc ∆1
e is the union of the crossing sides of the Jab,

so D[w] is contained in the crossing side of some Jab. Since Jab is a crossing
K4, the convex sides of all the 3-cycles in Jab are determined.

If D[w] is contained in the convex side of one of the 3-cycles D[auv] or
D[buv], then it follows from h-convexity that this side contains the convex
side of D[wuv] that is in C, and thus w ∈ Σ1

e. Therefore we may assume
that D[w] is contained in the convex sides of both D[abu] and D[abv]. Con-
sequently, D[wu] is contained in the convex side of D[abu] and D[wv] is
contained in the convex side of D[abv]. The K4 with vertices a, w, u, v has
a crossing in D and determines the convex side of the 3-cycle containing w
and e, and therefore shows that w ∈ Σ1

e.

Next we move on to edges. The following result is preparatory to showing
edges of D1

e and D2
e do not cross.

Lemma 5.8. Let D be an h-convex drawing of Kn with a specified witnessing
set of convex sides. If, for i = 1, 2, xi ∈ Σi

e, then the 3-cycles induced by
x1, e and x2, e do not cross in D.

Proof. Let J be the K4 induced by x1, x2, e and, for i = 1, 2, let Ti be the
3-cycle induced by xi, e. If D[J − x1x2] has a crossing, then T1 and T2 cross
but e is not crossed. The contradiction is that x1 and x2 are on the same
side of e.

We are now ready for the next major step.
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Lemma 5.9. Let D be an h-convex drawing of Kn with a specified witnessing
set of convex sides. For i ∈ {1, 2}, let Di

e be as in Notation 5.1. Then no
edge of D2

e crosses any edge of D1
e .

Proof. By way of contradiction, suppose some edge D[x2y2] of D2
e crosses

some edge D[x1y1] of D1
e . Lemma 5.8 implies not both {x1, y1} and {x2, y2}

can contain an end of e. Without loss of generality, we assume neither x1
nor y1 is an end of e. Furthermore, x2y2 6= e, so we may choose the labelling
such that x2 is not an end of e. Let J1 be the K4 induced by x1, y1, e.

Lemma 5.8 implies that x2y2 does not cross any edge of J1 incident with
an end of e, so the only crossing of x2y2 with J1 is with x1y1. Let F be the
face of D[J1] containing F 1

e . Lemma 5.7 shows that D[x2] ∈ F , and similarly
that D[y2] ∈ F if y2 is not an end of e. As we traverse D[x2y2] from D[x2],
we cross D[x1y1] once, and cross nothing else in D[J1]. Therefore, D[x1y1]
is incident with F , as is D[e]. Since the face F of D[J1] is incident with all
four vertices of J1, it follows that J1 is a crossing K4 in D.

Now, just after we traverse D[x2y2] across D[x1y1], we are in a face of
D[J1] incident with the crossing of D[J1] and with both D[x1] and D[y1].
This face is not incident with either end of e, nor is it equal to F . But, y2
is either an end of e or D[y2] lies in F , so D[x2y2] must cross D[J1] a second
time, which is a contradiction.

We conclude our study of h-convex drawings with the proof of Lemma 5.2.

Proof of Lemma 5.2. As in the paragraph immediately following the proof
of Lemma 5.5, for i = 1, 2, let Ci

e be the cycle in Di
e that is the boundary

of F i
e . Furthermore, let ∆i

e be the closed disc bounded by Ci
e that contains

D[Σi
e].

The result is an application of the following simple fact about curves in
the sphere.

Observation 5.10. Let ∆1 and ∆2 be closed discs in the sphere bounded by
simple closed curves γ1 and γ2, respectively. If:

• γ1 ∩ γ2 is an arc (or empty); and

• γ1 6⊆ ∆2 and γ2 6⊆ ∆1,

then ∆1 ∩∆2 = γ1 ∩ γ2.
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Lemmas 5.7 and 5.9 imply that, for {i, j} = {1, 2}, the open arc D[Ci
e] \

D[e] is disjoint from ∆j
e. The result is an immediate application of the

preceding paragraph.

6 Proof of Theorem 1.1

In this section, we prove (1.1.3)⇒(1.1.1): an h-convex drawing of Kn has sim-
ple closed curve extensions of the edges satisfying (PS1), (PS2), and (PS3).
This completes the proof of Theorem 1.1.

The proof iteratively constructs the set of simple closed curve extensions
of the edges. We assume that, for some J ⊂ E(Kn) and for all e ∈ J , there
exist extensions γe satisfying (PS1), (PS2), (PS3), and a fourth property
(PS4):

(PS4) For each e ∈ J and each e′ ∈ E(Kn) \ {e}, γe intersects the closed
edge D[e′] at most once, and, if it exists, the point of intersection is
either a crossing or a vertex incident with both e and e′.

Notice that if J = E(Kn), then the extensions of the edges in J automat-
ically satisfy (PS4) provided they satisfy (PS1), (PS2), (PS3). The extra
assumption (PS4) is required for inductive purposes.

We pick any e0 ∈ E(Kn) \ J ; the extension of γe0 is obtained as a result
of Theorem 3.2. Thus, we need to find the two initial curves γ1e0 and γ2e0
satisfying the hypotheses of Theorem 3.2 with respect to {γe | e ∈ J}. The
curve γie0 contains D[e0] and is completed by an arc joining the ends of e0
that is in Fe0 and “very near” the path Ci

e0
− e0; this is where we use the

specified convex sides of an h-convex drawing. Both curves are contained
in D[e0] ∪ Fe0 . How “near” is “very near” will depend on the curves that
are already determined. Our next lemma is the crucial point; Corollary 6.2
provides γ1e0 and γ2e0 .

Lemma 6.1. Let D be an h-convex drawing of Kn with witnessing set C
of convex sides. Let J ⊆ E(Kn) and suppose that, for each e ∈ J , there
is a simple closed curve γe in D[e] ∪ Fe containing D[e], and such that the
extensions {γe | e ∈ J} satisfy (PS1) and (PS4). If e0 ∈ E(Kn) \ J , then,
for any i ∈ {1, 2} and any sufficiently small neighbourhood N of D[Ci

e0
] in

Fe0 ∪D[Ci
e0

], there are at most two arcs in (γe ∩N) \D[Ci
e0

]. Furthermore,
at most one of these segments is contained in D[e].
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Proof. We begin with the central claim. For the sake of definiteness, we
assume i = 1.

Claim 1. If u is a vertex incident with e and is in C1
e0

, then there is no arc
of γe contained in the interior of ∆1

e0
that joins two points in D[C1

e0
] neither

of which is D[u].

Proof. Suppose to the contrary that there is such an arc α. It follows from
α ⊆ γe and (PS4) that there is no closed edge of D[C1

e0
] containing both ends

y, z of α. Thus, each component of D[C1
e0

] \ {y, z} has a vertex of C1
e0

. Let
D[w] be a vertex in the component of D[C1

e0
] \ {y, z} not containing D[u].

Both u and w are in C1
e0

, so both are drawn in ∆1
e0

. Therefore, D[uw] ⊆
∆1

e0
, so D[uw] crosses α. Since α ⊆ γe, D[e] cannot cross α, so uw 6= e.

But the edge D[uw] has the two points D[u] and the crossing with α in γe,
contradicting (PS4) and completing the proof. 2

Suppose that γe ∩D[C1
e0

] contains a vertex D[u], which must be incident
with e since γe satisfies (PS1). If both ends of e are in C1

e0
, then D[e] ⊆ D1

e0

since D1
e0

is the subdrawing of D induced by Σ1
e0

. Furthermore, the claim
implies that the ends of e are the only intersections of γe with Ce0 . Therefore
D[e] is the only segment of γe contained in ∆1

e0
.

We may therefore assume that u is the only end of e in C1
e0

. Then there
are only two directions from D[u] in γe; each of these directions can give an
arc in γe∩∆1

e0
having D[u] as an end. By Claim 1, these are the only possible

intersections of γe with ∆1
e0

. In this case, γe∩∆1
e0

is either one arc, with D[u]
as either an end or an interior point, or γe ∩∆1

e0
is just D[u].

It follows that if an end of e is in C1
e0

, then the two cases above show that
γe ∩∆1

e0
is either a non-trivial arc or D[u]. In the former case, only the ends

of this arc can be the start of a segment of γe from a point of D[C1
e0

] into
Fe0 , as required. In the latter case, γe ∩ ∆1

e0
= D[u], and there are exactly

two arcs of γe having an end in D[u] and extending into Fe0 .
Thus, we may assume that no point of γe ∩ D[C1

e0
] is a vertex. In this

case, (PS4) implies that every intersection of γe with D[C1
e0

] is a crossing.
To prove that there are at most two segments of γe from a point of D[C1

e0
]

into Fe0 , it suffices to prove that γe has at most two crossings with D[C1
e0

].
Suppose by way of contradiction that there are three crossings of γe with

D[C1
e0

]. Traverse D[C1
e0

] in one direction from such a crossing z. The first
vertex D[v] reached is incident with an edge f of C1

e0
such that both D[v]
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and z are in the closed edge D[f ]. Since z ∈ γe, none of the rest of D[f ]
(including D[v]) is in γe. In particular, D[v] is in Σ1

e ∪ Σ2
e.

Suppose D[w] is the first vertex reached from z traversing D[C1
e0

] in the
other direction, that is, if w is the other vertex incident with f . Because
γe ⊆ D[e] ∪ Fe, D[v] and D[w] are on different sides of γe. Therefore, they
are in different ones of Σ1

e and Σ2
e. Thus, every crossing of γe with D[C1

e0
]

produces a change between 1 and 2 in the “1,2,3”-labelling of Lemma 5.4.
Let z1, z2, z3 be three crossings of γe with D[C1

e0
], in this cyclic order. Then

the vertices of C1
e0

nearest each zk have labels 1 and 2. Starting at z1, we
find 1 and 2 near it. Up to relabelling, we may assume the 1 occurs between
z1 and z3 and the 2 between z1 and z2. Then choose the 1 near z2 and the 2
near z3 to obtain a 1,2,1,2 pattern, contradicting Lemma 5.4.

The following corollary is a straightforward consequence of Lemma 6.1.

Corollary 6.2. Let D be an h-convex drawing of Kn with witnessing set C
of convex sides. Let J ⊆ E(Kn) and suppose that, for each e ∈ J , there
is a simple closed curve γe in D[e] ∪ Fe containing D[e], and such that the
extensions {γe | e ∈ J} satisfy (PS1) and (PS4). For any i ∈ {1, 2} and
any sufficiently small neighbourhood N of D[Ci

e0
] in Fe0 ∪D[Ci

e0
], there is a

choice of γie0 in N such that the curves in J ∪ {δie0} satisfy (PS1), (PS2w),
(PS3), and (PS4).

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1 (1.1.3) implies (1.1.1). Suppose J ⊆ E(Kn)
and we have, for each e ∈ J , a simple closed curve γe, such that the set {γe |
e ∈ J} satisfies (PS1)–(PS4). If J = E(Kn), then we are done; otherwise,
let e0 ∈ E(Kn) \ J .

We show there is a curve γe0 containing D[e0] and otherwise in the face Fe0

of D1
e0
∪D2

e0
bounded by (C1

e0
−e0)∪(C2

e0
−e0) and such that {γe | e ∈ J∪{e0}}

satisfies (PS1)–(PS4).
Let M consist of those e ∈ E(Kn) \ (J ∪ {e0}) such that D[e] ∩ Fe0 6= ∅.

In any order, repeatedly use Corollary 6.2 to obtain, for all e ∈M , δ1e so that
the curves in the set Γ = {γe | e ∈ J} ∪ {δ1e | e ∈M} satisfy (PS1), (PS2w),
(PS3), and (PS4).

For each e ∈ J ∪ M , γe \ e is in the face Fe of D1
e ∪ D2

e bounded by
(C1

e − e) ∪ (C2
e − e), Σ1

e is on one side of γe and Σ2
e is on the other side of

γe. Let δ1e0 be as in Corollary 6.2 with respect to e0 and J ; this is our first
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approximation to γe0 . Applying Corollary 6.2 to C2
e0

, consider an analogous
curve δ2e . By Corollary 6.2, both Γ∪{δ1e0} and Γ∪{δ2e0} satisfy (PS1), (PS3),
(PS4). Moreover, δ1e0 and δ2e0 intersect each curve in Γ at most twice and all
intersections are crossings.

For i = 1, 2, let Γi = {δ ∈ Γ : δ ∩ δie0 6= ∅}.

Claim 1. Either Γ = Γ1 ∪ Γ2 or D is f-convex.

Proof. Suppose that for some e ∈ J ∪M the extension δ ∈ Γ of e is not
in Γ1 ∪ Γ2. From Lemma 5.3 it follows that any edge of M crosses both δ1e0
and δ2e0 . Therefore e ∈ J and δ = γe. Since γe does not intersect δ1e0 ∪ δ

2
e0

, we
conclude that γe is disjoint from Fe0 .

Recall that, for ` = 1, 2, ∆`
e0

is the closed disc in D`
e0

bounded by C`
e0

and
disjoint from Fe0 . The preceding paragraph implies that, for some ` ∈ {1, 2},
γe is contained in ∆`

e0
. It follows that: (i) e has both ends in ∆`

e0
; and (ii)

every vertex of C`
e0

is in the same one of ∆1
e and ∆2

e (because, by assumption,
γe separates ∆1

e from ∆2
e).

If an edge xy crosses e, then x and y are not both in the same one of
Σ1

e and Σ2
e. Therefore, (ii) implies that, if x, y are vertices in C`

e0
, then xy

does not cross e. In particular, letting z be one end of e0 and letting xy
run through the edges of C`

e0
, the 3-cycles xyz bound convex sides that cover

∆`
e0

. It follows that e is contained in one of these; let it be xyz.
Suppose by way of contradiction that e has an end u that is not one of

x, y, z. Then h-convexity implies that the convex sides in C of the 3-cycles
uxy, uxz, and uyz are all contained in the convex side of xyz.

Let v be the other end of e. If v is one of x, y, z, then the resulting
planar K4 shows that e has the two vertices in {x, y, z} \ {v} not both in the
same one of Σ1

e and Σ2
e, a contradiction. Likewise, if v is not one of x, y, z,

then the one of the 3-cycles uxy, uxz, and uyz containing v on its convex
side has its two vertices from x, y, z not both in the same one of Σ1

e and Σ2
e,

a contradiction. These contradictions show that both ends of e are among
x, y, z; that is, both ends of e are in C`

e0
.

Next, suppose by way of contradiction, that e is not an edge of C`
e0

. Then
it is a chord of C`

e0
in D`

e0
, and so it crosses an edge xy with x and y in C`

e0

on different sides of e. But then we have x and y are not both in the same
one of Σ1

e and Σ2
e, a contradiction.

Lemma 5.6 shows that D`
e0

(using the convex sides in C) is f-convex. Since
e is in C`

e0
, it follows that the vertices of D`

e0
not incident with e are, for some

k ∈ {1, 2}, all in Σk
e . Since δj ⊆ ∆`

e0
, all vertices of ∆3−`

e0
are in the same
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Σk
e as the two vertices incident with e0. It follows that all vertices of Kn not

incident with e are in the same Σk
e , showing that D is f-convex, as claimed.

2

In the case D is f-convex, [10, Thm. 1] shows that D is homeomorphic to
a pseudolinear drawing in the plane. By definition, the pseudolines intersect
once in the plane, and they can be chosen so that they all cross again at the
point at infinity that completes the sphere.

Thus we may assume that Γ1 ∪ Γ2 = Γ. In this case we apply Theorem
3.2 to Γ, σ = D[e0], γ1 = δ1e0 and γ2 = δ2e0 to obtain a curve γe0 such that
{γe | e ∈ J ∪ {e0}} satisfies (PS1), (PS2), (PS3), and (PS4), as desired.

A given h-convex drawing D may have different choices for the convex
sides of the 3-cycles that witness h-convexity. In Section 5, the extensions
of D into arrangements of pseudocircles rely on a choice of convex sides
witnessing h-convexity. Moreover, the proof of the implication (1.1.2) ⇒
(1.1.3) shows how the choice of convex sides can be recovered from such an
arrangement of pseudocircles. Define two such arrangements of pseudocircles
to be equivalent if they determine the same convex sides.

The sweeping theorem of Snoeyink and Hershberger [25] shows that either
of two equivalent arrangements of pseudocircles can be shifted to the other
by a sequence of Reidemeister II and III moves. Simple examples show that
Type II moves may be required.

7 Non-extendible drawings of K9 and K10

In this section, we present a drawing of each of K9 and K10. The drawing
D9 of K9 in Figure 10 has an extension to an arrangement of pseudocircles
(that is, (PS2w)) that satisfies (PS1), but no such extension also satisfies
(PS2). The drawing D10 of K10 in Figure 10 does not have an extension to
an arrangement of pseudocircles.

The analyses of the drawings D9 and D10 involve spirals in the drawings
D1 and D2 in Figure 11. For convenience, we extend the notion of spiral to
closed spiral. For an arrangement Γ of simple closed curves, a closed spiral
is a simple closed curve γ in P (Γ) with basepoint s such that, for every
sufficiently small open interval I in γ containing s, γ \ I is a spiral.

To see the point of closed spirals, consider the drawing D1. The unique
simple closed curve γ is D1 is a closed spiral, whose basepoint is the vertex
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Figure 10: The upper drawing D9 of K9 has a pseudocircular extension,
but none satisfying (PS2). The dark and light gray (red and green online)
subdrawings in D9 are both isomorphic to D1 (see Figure 11 below). The
lower drawing D10 of K10 has no pseudocircular extension. In the drawing
of K10, the thicker edges are the drawing D2 (Figure 11).

in γ. Let Γ be an arrangement of pseudocircles extending D1. Then, for any
sufficiently small open interval I in γ containing s, I does not contain any
crossing of Γ other than s, and γ \ I is a spiral in P (Γ). By Theorem 2.3,
γ \ I has an external segment, which corresponds to a simple closed curve in
P (Γ) that is contained in the interior of γ.

It follows that, any extension of D9 to an arrangement of pseudocircles
must have a pseudocircle in the bounded side of each of the coloured copies
of D1, showing it does not satisfy (PS2).

On the other hand, we can extend the straight edges into lines and extend
the two curved edges by line segments connecting their vertices. In the
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Figure 11: The crucial configurations D1 on the left and D2 on the right.

sphere, adding the point at infinity to the straight lines gives an extension
of the drawing of K9 to an arrangement of simple closed curves satisfying
(PS1) and (PS2w). Some of the pseudocircles may intersect tangentially at
the point at infinity since we did not assume that the lines are in general
position, but this can be corrected if we perturb the curves. Thus, without
(PS3), (PS1) and (PS2w) do not imply (PS1) and (PS2).

For the drawing D10, we show that there is no arrangement of pseudocir-
cles extending the drawing D2 on the right in Figure 11. Since D2 is contained
in D10, this implies there is no arrangement of pseudocircles extending D10.

Let γ denote the unique simple closed curve in D2 containing the ten
crossings and none of the vertices. Let s be the upper most crossing in the
diagram. Then γ is a closed spiral.

For any sufficently small open interval I in γ containing s, γ \I is a spiral
in P (Γ) that has weight 7 with decomposition α0α1 . . . α7. The drawing D2

already shows that the segments α1, . . . , α7 are coherent. The segments α0

and α7 are symmetric.
The extension α+

0 is contained in pseudocircle γ0 containing α0. We note
that γ0 contains a vertex outside of our original simple closed curve γ. There-
fore, the choice of I shows α+

0 has its end on γ \ I. Consequently, α0 is also
coherent. Likewise, α7 is coherent, showing P (Γ) contains a coherent spiral,
contradicting Theorem 2.3. That is, D2 and, consequently, the drawing of
K10 do not have extensions to arrangements of pseudocircles.

8 Conclusion

In this section, we mention a few results and questions about drawings of Kn

related to this work. We start with the questions.
The drawing D10 in Figure 10 has no extension to an arrangement of
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pseudocircles. It is natural to wonder if there is a fixed k such that every
drawing of Kn has an extension to an arrangement of simple closed curves
that pairwise cross at most k times. In fact, for a drawing of any simple
graph, there is such an extension with k ≤ 4. See Figure 12 for an idea of
how such an extension may be achieved.

Figure 12: Extensions near a vertex.

Some interesting questions remain unresolved.

Question 1. Does every convex drawing of Kn have an extension to simple
closed curves pairwise crossing at most twice? exactly twice?
The drawings in Figure 10 are not convex.

Question 2. Arroyo et al [9] characterize drawings of (not necessarily com-
plete) graphs whose edges extend to an arrangement of pseu-
dolines by giving the complete (infinite) list of obstructions.
Given the close connection we developed here between pseu-
dospherical and pseudolinear drawings for complete graphs,
it is reasonable to wonder if there is an analogous theorem
for “arrangements of pseudocircles”.

We conjecture that there is a list-of-obstructions characteri-
zation of when an arbitrary graph has an extension satisfying
(PS1), (PS2) and (PS3). It is not clear to us at this juncture
how to proceed with this.

The study of spirals and Theorem 2.3 played an essential role in the proof
of Theorem 1.1 and also led to the drawings D1 and D2 used in the drawings
of K9 and K10.

Recall that a string is a homeomorph of a compact real interval.
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Question 3. Can we characterize those sets of strings that are extendible
to an arrangement of pseudocircles?

So far, the authors have not found an example of a set of strings not-
extendible to a set of pseudocircles that cannot be explained in terms of
spirals and Theorem 2.3. A further study of spirals may be the key to solve
this question.

We conclude with two simple results about pseudospherical drawings of
Kn. For the first, Lemma 5.2 implies that every edge of a pseudospherical
drawing of Kn induces a split of Kn into two pseudolinear drawings of smaller
complete graphs (one having k, say, vertices and the other n+2−k vertices).
Every pseudolinear drawing of Kn has at least n2 + O(n log(n)) empty trian-
gles (that is, 3-cycles having a side that does not contain a vertex) [10]. Thus,
we can estimate the number of empty triangles on one side or other of the
split. Adding in empty triangles involving vertices on different sides of the
split yields at least 3

4
n2 + O(n log(n)) empty triangles in a pseudospherical

drawing of Kn.
Rafla [24] conjectured that every (good) drawing of Kn has a Hamilton

cycle with no self-crossing. Ábrego et al. have enumerated all the drawings
of Kn with n ≤ 9 [2] and in this way verified the conjecture for all these
drawings of Kn. We extend to pseudospherical drawings the folklore proof
that a pseudolinear drawing of Kn has such a Hamilton cycle.

For each edge e of the pseudospherical drawing D of Kn, let c(e) denote
the number of pseudocircles that D[e] crosses. Choose a Hamilton cycle H
in Kn that minimizes

∑
e∈E(H) c(e). If e1, f1 ∈ E(H) cross in D, then let J

be the K4 induced by e1 and f1. Then D[J ] has exactly one crossing, namely
e1 with f1. The remaining four edges in J come in two disjoint, non-crossing
pairs. For one such pair {e2, f2}, (H −{e1, f1}) + {e2, f2} is also a Hamilton
cycle H ′.

We claim that
∑

e∈E(H′) c(e) <
∑

e∈E(H) c(e), contradicting the choice of
H.

1. Clearly, the two contributions of e1 crossing γf1 and f1 crossing γe1 are
counted for the H-sum, but not for the H ′-sum.
Now suppose e ∈ E(H ′) crosses the pseudocircle γf containing f ∈
E(H ′).

2. If e is not {e2, f2}, then the eγf -crossing is counted for both H and H ′.
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3. If e = e2, say, then γf crosses e2 and must continue through another
side of the 4-cycle D[J − {e1, f1}]. In order to get there, it must cross
at least one of e1 and f1. If γf crosses both e2, f2, then it also crosses
both e1, f1. Therefore, γf has at least as many crossing with e1, f1 that
it has with e2, f2, as required.
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[2] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, T. Hackl, J. Pam-
mer, A. Pilz, P. Ramos, G. Salazar, and B. Vogtenhuber. All good draw-
ings of small complete graphs. In Proc. 31st European Workshop on
Computational Geometry EuroCG ’15, pages 57-60, Ljubljana, Slove-
nia, 2015.

[3] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, D. McQuillan, B.
Mohar, P. Mutzel, P. Ramos, R.B. Richter, B. Vogtenhuber, Bishellable
drawings of Kn. SIAM J. Discrete Math. 32 (2018), no. 4, 2482–2492.
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[6] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G.
Salazar, The 2-page crossing number of Kn, Disc. Comput. Geom. 49
(2013), no. 4, 747–777.
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[20] J. Kynčl, https://mathoverflow.net/questions/128878/drawings-
of-complete-graphs-with-zn-crossings

[21] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex quadri-
laterals and k-sets, in Towards a theory of geometric graphs , 139–148,
Contemp. Math. 342, Amer. Math. Soc., Providence, RI, 2004.
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