Extending drawings of complete graphs into arrangements of pseudocircles

Alan Arroyo, R. Bruce Richter ${ }^{\dagger}$ and Matthew Sunohara ${ }^{\ddagger}$
alanarroyoguevara@gmail.com, brichter@uwaterloo.ca, matthew.sunohara@mail.utoronto.ca

$\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$-ed: April 16, 2022
Keywords: Drawings of complete graphs, pseudolinear drawings, pseudospherical drawings
AMS Classification: 05C10, 52C10, 52C30

Abstract

Motivated by the successful application of geometry to proving the Harary-Hill Conjecture for "pseudolinear" drawings of K_{n}, we introduce "pseudospherical" drawings of graphs. A spherical drawing of a graph G is a drawing in the unit sphere \mathbb{S}^{2} in which the vertices of G are represented as points - no three on a great circle - and the edges of G are shortest-arcs in \mathbb{S}^{2} connecting pairs of vertices. Such a drawing has three properties: (1) every edge e is contained in a simple closed curve γ_{e} such that the only vertices in γ_{e} are the ends of e; (2) if $e \neq f$, then $\gamma_{e} \cap \gamma_{f}$ has precisely two crossings; and (3) if $e \neq f$, then e intersects γ_{f} at most once, either in a crossing or an end of e. We use Properties (1)-(3) to define a pseudospherical drawing of G. Our main result is that, for the complete graph, Properties (1)-(3) are equivalent to the same three properties but with "precisely two crossings" in (2) replaced by "at most two crossings".

[^0]The proof requires a result in the geometric transversal theory of arrangements of pseudocircles. This is proved using the surprising result that the absence of special arcs (coherent spirals) in an arrangement of simple closed curves characterizes the fact that any two curves in the arrangement have at most two crossings.

Our studies provide the necessary ideas for exhibiting a drawing of K_{10} that has no extension to an arrangement of pseudocircles and a drawing of K_{9} that does extend to an arrangement of pseudocircles, but no such extension has all pairs of pseudocircles crossing twice.

1 Introduction

The Harary-Hill Conjecture states that the crossing number of the complete graph K_{n} is given by the formula

$$
H(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor .
$$

Some of the known families of drawings of K_{n} achieving $H(n)$ crossings have the geometric character of being spherical: a spherical drawing of a graph G is a drawing in the unit sphere \mathbb{S}^{2} in which the vertices of G are represented as points-no three on a great circle - and the edges of G are shortest-arcs in \mathbb{S}^{2} connecting pairs of vertices.

Examples of families having $H(n)$ crossings are: Hill's Tin Can Drawings [18]; Kynčl's general spherical drawing in his posting [20]; the family of Ábrego et al. [5] in which every edge is crossed at least once; and the crossingminimal 2-page drawings in Abrego et al. [6, Sec. 4.3, 4.4], where they show that the 2-page crossing number of K_{n} is $H(n)$. The first three of these are known to be spherical.

A surprising result by Moon [23] states that the number of crossings in a random spherical drawing of K_{n} has, as n goes to infinity, $\frac{3}{8}\binom{n}{4}$ crossings. Thus, spherical drawings are linked with the asymptotic version of the Harary-Hill Conjecture:

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{cr}\left(K_{n}\right)}{\binom{n}{4}}=\frac{3}{8}
$$

No drawing of K_{n} having $H(n)$ crossings is known to be non-spherical (at least up to Reidemeister-type moves; see below). (For n even, the 2-page drawings in [6] are "pseudospherical"; see the discussion in our Section 4.)

However, it is still unknown whether every spherical drawing of K_{n} has at least $H(n)$ crossings.

The analogue in the plane of spherical drawings is rectilinear drawings. A rectilinear drawing of a graph G is a drawing of G in the plane so that its edges are straight-line segments. One of the most important recent accomplishments in the study of crossing numbers is a result of Ábrego and Fernández-Merchant [1] and, simultaneously and independently, Lovász et al. [21], showing that rectilinear drawings of K_{n} have at least $H(n)$ crossings. (It follows from [7], especially Theorem 11 there, that, for $n \geq 10$, rectilinear drawings have strictly more than $H(n)$ crossings.) There is a quite direct line from this early work, via shellability [3, 4], to Ábrego et al [6] determining the 2-page crossing number of K_{n}.

The proofs that rectilinear drawings of K_{n} have at least of $H(n)$ crossings use machinery for studying arrangements of pseudolines, and only require the property that the edges in a rectilinear drawing can be extended to such an arrangement. Drawings whose edges can be extended into an arrangement of pseudolines are called pseudolinear. An analogous property is satisfied by spherical drawings: each edge can be extended to a great circle. This implies that the edges can be extended into an arrangement of pseudocircles, defined as a set of simple closed curves in \mathbb{S}^{2} such that every two intersect at most twice, and every intersection is a crossing between two curves.

The success of the geometric approach for the rectilinear crossing number of K_{n} suggests trying an analogous approach for spherical drawings, replacing pseudolinear drawings with a suitable generalization of spherical drawings, which we call "pseudospherical" drawings and define below.

There are nice characterizations of pseudolinear drawings of K_{n}. Aichholzer et al. [8] prove that a drawing of K_{n} in the plane is pseudolinear if and only if every crossing K_{4} has the facial 4 -cycle bounding the infinite face of the K_{4}. Arroyo et al. [10] have an equivalent characterization: a drawing of K_{n} is pseudolinear if and only if it is f-convex. Arroyo et al. [9] characterize when a drawing of a general graph in the plane is pseudolinear.

The notion of an f-convex drawing is introduced by Arroyo et al. in [12] as part of the convexity hierarchy:

$$
\{\text { convex drawings }\} \supset\{\text { h-convex drawings }\} \supset\{\text { f-convex drawings }\}
$$

A drawing D of K_{n} is convex if, for each 3-cycle T of K_{n}, there is a closed side Δ of the drawing $D[T]$ of T such that, if vertices x, y are drawn in Δ,
then $D[x y] \subseteq \Delta$. A principal theorem in [11] is a partial result suggesting that all crossing-minimal drawings of K_{n} might be convex.

A convex drawing D of K_{n} is h-convex if the convex side Δ_{T} of each 3cycle T may be chosen so that, if a 3 -cycle T^{\prime} is, for another 3 -cycle T, drawn in Δ_{T}, then $\Delta_{T^{\prime}} \subseteq \Delta_{T}$. In unpublished work, the method for the principal theorem in [11] mentioned above shows that a convex, but not h-convex, drawing of K_{n} is not crossing-minimal. Putting these two ideas together, it is conceivable that every crossing-minimal drawing of K_{n} is h-convex.

It is quite easy to show that every spherical drawing is h-convex (see Section 4). However, it is not true that every h-convex drawing is spherical. The property of h-convexity is preserved under (the natural analogue of) Reidemeister III moves, but sphericity is not. Reidemeister III moves preserve three properties of spherical drawings which we take as the definition of a pseudospherical drawing.

Figure 1: Reidemeister III move.

A drawing of a graph G in the sphere is pseudospherical if, for any distinct edges e and f :
(PS1) e is contained in a simple closed curve γ_{e} such that no vertex other than an end of e is contained in γ_{e};
(PS2) $\left|\gamma_{e} \cap \gamma_{f}\right|=2$ and all intersections are crossings; and
(PS3) $e \cap \gamma_{f}$ has at most one point.
The least obvious part of the definition is perhaps (PS3), which can be thought of as a combinatorial analogue of the property that an edge in a spherical drawing is not just a geodesic arc between its endpoints, but a shortest-arc between its endpoints.

Since the number of crossings of a drawing is also preserved under Reidemeister III moves, one obtains non-spherical drawings of K_{n} with $H(n)$ crossings from the spherical examples given above. It is more natural to
consider pseudospherical drawings than spherical drawings of K_{n} in connection with crossing-minimality because pseudosphericity is preserved under Reidemeister III moves.

The principal part of our main theorem is to show that a drawing of K_{n} is pseudospherical if and only if it is h-convex, a property which can be checked in polynomial time (see Section 4). This can be seen as a parallel to the characterization by Arroyo et al. [10] of pseudolinear drawings of K_{n} as f-convex drawings of K_{n}. The equivalence also enables the introduction of geometric methods to the study of h-convex drawings and bolsters the idea that all crossing-optimal drawings of K_{n} are h-convex/pseudospherical: evidence that crossing-optimal drawings of K_{n} are h-convex is evidence that they are pseudospherical and vice versa.

In fact, we will do quite a bit more than characterize pseudospherical drawings of K_{n}. The reader may have wondered about the choice of equality in (PS2). A natural variation of the notion of a pseudospherical drawing results from weakening (PS2). A drawing D is weakly pseudospherical if it satisfies (PS1), (PS3), while (PS2) is relaxed to
(PS2w) $\left|\gamma_{e} \cap \gamma_{f}\right| \leq 2$ and all intersections are crossings.
Our main result is the following.
Theorem 1.1. For a drawing D of K_{n}, the following are equivalent:
(1.1.1) D is pseudospherical;
(1.1.2) D is weakly pseudospherical; and
(1.1.3) D is h-convex.

The implication (1.1.1) \Rightarrow (1.1.2) is trivial. Although the reader may not see it now, the implication $(1.1 .2) \Rightarrow(1.1 .3)$ is quite easy. The hard part is $(1.1 .3) \Rightarrow$ (1.1.1). We do not see how to prove $(1.1 .2) \Rightarrow$ (1.1.1) directly.

The proof of $(1.1 .3) \Rightarrow$ (1.1.1) proceeds by iteratively finding a curve $\gamma_{e^{\prime}}$ for the next edge e^{\prime} to extend by one the current set Γ of γ_{e} satisfying the conditions (PS1)-(PS3). There are two principal steps involved. The first step is to find two initial approximations for $\gamma_{e^{\prime}}$ (when added to Γ, either of these will satisfy (PS2w)), while the second is to repeatedly shift one of the initial approximations, gradually increasing the number of curves in Γ that it intersects until it intersects them all, at which point it is a Γ-transversal.

Each of these steps has its challenges. To find the initial approximations, we require an extensive study of h-convex drawings; this is done in Section 4. Crucially, each edge of an h-convex drawing partitions the vertex set of K_{n} into two pseudolinear drawings of (typically smaller) complete subgraphs; the initial approximations are near the outer boundary of each of these pseudolinear subdrawings. (Motivated by this study, we tried to show this partitioning holds for pseudospherical drawings of general graphs. In a personal communication, Xinyu Lily Wang has shown that it is false in the more general context.)

Producing the Γ-transversal requires shifting one of a pair of initial approximations from the preceding paragraph towards the other using analogues of Reidemeister II and III moves. The core of the shifting turns out to require a characterization of an arrangement of pseudocircles: a set of simple closed curves in the sphere such that every two intersect at most twice, and every intersection is a crossing between the two curves.

The characterization of arrangement of pseudocircles requires an even more general notion. An arrangement of simple closed curves in the sphere is a set of simple closed curves, any two of which have finitely many intersections, all of which are crossings. If Σ is an arrangement of simple closed curves, then a spiral of Σ is an arc (that is, a homeomorph of a compact interval) in the union $P(\Sigma)$ of the curves in Σ that always makes the sameeither all left or all right-turn in changing from one curve to another (see Figure 2). In Section 2, we give a more precise definition of spiral and define coherent spirals. The auxiliary result that we need is the following.

Theorem 1.2. Let Σ be an arrangement of simple closed curves. Then Σ is an arrangement of pseudocircles if and only if Σ has no coherent spirals.

Our study of spirals led us to two drawings, one for each of K_{10} and K_{9}. The former has no extension of its edges to an arrangement of pseudocircles. The latter has such an extension, but no extension has all pseudocircles crossing exactly twice. These examples are exhibited in Section 7.

Independently, Aichholzer at the 2015 Crossing Number Workshop in Rio de Janeiro and Pilz at the Geometric Graph Week in Berlin (2015) asked if every drawing of K_{n} has an extension to an arrangement of pseudocircles. The drawing of K_{10} answers this question in the negative. The drawing of K_{9} answers negatively the related question of improving a pseudocircular extension to a pseudospherical extension.

In the next section, we introduce spirals and prove Theorem 1.2. Section 3 contains the proof that an initial pair of approximations for Γ implies the existence of a Γ-transversal. Section 4 introduces h-convex drawings and proves the easy implication $(1.1 .2) \Rightarrow$ (1.1.3). Section 5 contains the necessary discussion of h-convex drawings to obtain the initial approximations, which is done in Section 6, thereby completing the proof of Theorem 1.1. The interesting drawings of K_{9} and K_{10} are in Section 7, while Section 8 has concluding remarks.

2 Spirals and Coherence

A spiral is a special arc, illustrated in Figure 2 and defined precisely below, in the union of an arrangement of simple closed curves that has all its crossings facing the same side of the arc. (Alternatively, a spiral always makes the same - either all left or all right - turn when it changes from one curve to another; it is permitted to continue straight through a crossing.) The main result in this section is a characterization of arrangements of pseudocircles as either (a) not having any "coherent" spirals or, equivalently, (b) every spiral has an "external segment". That an arrangement of pseudocircles has no coherent spiral is the point required for the proof of Theorem 1.1.

Figure 2: An example of a spiral.

In an arrangement of simple closed curves Γ (defined just before Theorem 1.2), three or more of the curves in Γ may cross at the same point. This is necessary for extensions of drawings of K_{n}, where $n-1$ curves pairwise cross at each vertex.

A non-trivial arc (that is, not just a single point) A in the union $P(\Gamma)$ of the curves in Γ with ends s and t has a unique decomposition sequence $\alpha_{0} \alpha_{1} \ldots \alpha_{m}$ of subarcs of A, as depicted in Figure 3, such that:
(i) s is an end of α_{0}, t is an end of α_{m};
(ii) for each $i=0,1, \ldots, m$, there is a $\gamma_{i} \in \Gamma$ such that $\alpha_{i} \subseteq \gamma_{i}$; and
(iii) for $i=1,2, \ldots, m$, the curves γ_{i-1} and γ_{i} in Γ are distinct and $\alpha_{i-1} \cap \alpha_{i}$ is a crossing of γ_{i-1} and γ_{i}.

The number m is the weight of A. Figure 3 shows an arrangement of simple closed curves with an arc of weight 3 . For $i=1,2, \ldots, m$, the crossing of α_{i-1} with α_{i} is denoted \times_{i}. For convenience, we set $\times_{0}=s$ and $\times_{m+1}=t$.

Figure 3: Illustrated is an arrangement of four simple closed curves. The $s t$-arc indicated by the dotted curve has decomposition sequence $\alpha_{0} \alpha_{1} \alpha_{2} \alpha_{3}$. Notice that the $\times_{3} t$-arc α_{3} makes no turn at the crossing in its middle and the right-hand circle is both γ_{1} and γ_{3}.

For $i=0,1, \ldots, m, \alpha_{i}^{-}$and α_{i}^{+}are the closures of the components of $\gamma_{i} \backslash A$ incident with \times_{i} and \times_{i+1}, respectively. Four such α_{j}^{ε} are illustrated in Figure 4. Evidently, $\alpha_{i}^{ \pm}$consists of the continuation of α_{i} through either $\times_{i}(-)$ or $\times_{i+1}(+)$ up to the next meeting with A.

The continuations α_{i}^{+}and α_{i+1}^{-}both leave \times_{i+1} on the same side of A. This is the side of A that \times_{i+1} faces. In Figure $3, \times_{1}$ and \times_{2} face different
sides of the dotted arc. We are now prepared for the definitions of spiral, external segment, and coherence.

Definition 2.1 (Spiral, External Segment, Coherence). Let Γ be an arrangement of simple closed curves and let A be an arc in $P(\Gamma)$ with decomposition sequence $\alpha_{0} \alpha_{1} \ldots \alpha_{m}$. For each $i=0,1,2 \ldots, m$, let $\gamma_{i} \in \Gamma$ be such that $\alpha_{i} \subseteq \gamma_{i}$. (Only consecutive γ_{i} are required to be distinct; if $j>i+1$, then γ_{j} could be the same as γ_{i}.)
(2.1.1) The $\operatorname{arc} A$ is a spiral if all of $\times_{1}, \ldots, \times_{m}$ face the same side of A.
(2.1.2) For $i \in\{0,1,2, \ldots, m\}$, the segment α_{i} is

$$
\left\{\begin{array}{ll}
\text { external for } A, & \gamma_{i} \cap A=\alpha_{i} \\
\text { internal for } A, & \text { otherwise }
\end{array} .\right.
$$

(2.1.3) For $i \in\{0,1,2, \ldots, m\}$ and $\varepsilon \in\{+,-\}$, the arc α_{i}^{ε} is a coherent extension if: (a) α_{i} is internal for A and (b) α_{i}^{ε} has both ends on the same side (see discussion of "side" below) of the interior of A. (In Figure $4, \alpha_{1}^{-}$is not a coherent extension; the other three are.)
(2.1.4) For $i \in\{0,1,2, \ldots, m\}$, the segment α_{i} is coherent if at least one of α_{i}^{-}and α_{i}^{+}is a coherent extension. In Figure 4, both α_{0} and α_{3} are coherent.
(2.1.5) The $\operatorname{arc} A$ is coherent if, for each $i=0,1,2, \ldots, m, \alpha_{i}$ is coherent.

As we traverse A from one end to the other, there are naturally left and right sides. The two ends of the $\operatorname{arc} \alpha_{i}^{ \pm}$are in A. The issue in the definition of coherence is: are the points near each end of $\alpha_{i}^{ \pm}$on the same side of A or not. "Left" and "right" depend on an orientation of A and are irrelevant to us.

To be on the same side, the ends of $\alpha_{i}^{ \pm}$must be in the interior of A. As the points \times_{0} and \times_{m+1} are not in the interior of A, we have the following.

Remark 2.2. Neither α_{0}^{-}nor α_{m}^{+}is coherent.
The following characterization of an arrangement of pseudocircles in terms of its spirals seems to be quite interesting in its own right. We only need (2.3.1) \Rightarrow (2.3.2) for the proof of Theorem 1.1.

Figure 4: Illustrating several points in Definition 2.1. The arc A is homeomorphic to a straight line segment and is so represented in the diagram. (Color online.)

Theorem 2.3. Let Γ be an arrangement of simple closed curves in the sphere. Then the following are equivalent:
(2.3.1) Γ is an arrangement of pseudocircles;
(2.3.2) $P(\Gamma)$ has no coherent spirals;
(2.3.3) $P(\Gamma)$ has no coherent spirals with weight 1; and
(2.3.4) every spiral A in $P(\Gamma)$ has a segment external for A.

This characterization fits in well with much recent work on arrangements of pseudocircles. The paper of Felsner and Scheucher [15] is one example; their references [2], [7], [10], [15], [19], and [26] are others. Felsner and Scheucher have a web page devoted to pseudocircles [16]. Another recent work about unavoidable configurations in the sense of Ramsey's Theorem is Medina et al. [22].

The example to the left in Figure 5 has a spiral A in an arrangement of pseudocircles. This spiral is not coherent because α_{1} is external for A.

In addition to its use in the proof of Theorem 1.1, Theorem 2.3 is useful for constructing drawings of graphs that cannot be extended to arrangements of pseudocircles. For example, the right-hand diagram in Figure 5 cannot be extended to an arrangement of pseudocircles because the $s t$-arc indicated by the dashed curve induces a coherent spiral in any such extension. A similar idea is used in Section 7 to construct a non-extendible drawing of K_{10}.

Figure 5: The dotted arcs are spirals. The left-hand one has weight 2 and has an external segment. The right-hand one is coherent and is in a drawing related to the examples in Section 7.

Proof of Theorem 2.3. The implication (2.3.2) \Rightarrow (2.3.3) is trivial. We prove $(2.3 .3) \Rightarrow(2.3 .1)$ and $(2.3 .1) \Rightarrow(2.3 .2)$ to complete the proof that (2.3.1), (2.3.3), and (2.3.2) are equivalent. Since $(2.3 .4) \Rightarrow$ (2.3.2) is trivial, we finish the proof with $(2.3 .2) \Rightarrow$ (2.3.4).
(2.3.3) \Rightarrow (2.3.1). Suppose by way of contradiction that γ_{0}, γ_{1} are distinct curves in Γ such that $\left|\gamma_{0} \cap \gamma_{1}\right|>2$. Then $\left|\gamma_{0} \cap \gamma_{1}\right| \geq 4$. Let $s \in \gamma_{0} \backslash \gamma_{1}$ and, traversing γ_{0} in one direction starting at s, let p_{1}, p_{2}, p_{3} be the first three points of $\gamma_{0} \cap \gamma_{1}$ encountered.

Let A be the arc obtained by starting at s, continuing along γ_{0} through p_{1} to p_{2} and then following $\gamma_{1} \backslash\left\{p_{1}\right\}$ through p_{3} to a point t just beyond p_{3}. The decomposition of A is $\alpha_{0} \alpha_{1}$, with, for $i=1,2, \alpha_{i} \subsetneq A \cap \gamma_{i}$. Since every arc in $P(\Gamma)$ with weight at most 1 is a spiral, A is a spiral. The fact that the points p_{2} and p_{3} of $\gamma_{0} \cap \gamma_{1}$ are consecutive in γ_{0} imply that α_{0}^{+}is coherent.

On the other hand, the $s p_{2}$-subarc of A intersects the $p_{1} p_{2}$-subarc of $\gamma_{1} \backslash\left\{p_{3}\right\}$ just in $\left\{p_{1}, p_{2}\right\}$. This shows that α_{1}^{-}is coherent, completing the proof that A is coherent, the required contradiction.
$(2.3 .1) \Rightarrow(2.3 .2)$. To obtain a contradiction, suppose A is a coherent spiral with least weight. An arc with weight 0 is not coherent, so the decomposition $\alpha_{0} \alpha_{1} \cdots \alpha_{m}$ of A has $m \geq 1$.

The first claim imposes constraints on what happens at points "under" a forward jump such as, in Figure $4, \times_{2}$ under α_{0}^{+}. For an extension α_{i}^{ε} of α_{i}, a_{i}^{ε} denotes the other end of α_{i}^{ε}.

Claim 1. Suppose that α_{j}^{+}is a coherent extension of α_{j}. If there is an $\ell \geq j+2$ such that a_{j}^{+}is in $\alpha_{\ell} \backslash\left\{x_{\ell}\right\}$, then:

1. for each $i=j+2, j+3, \ldots, \ell, \alpha_{i}^{-}$is disjoint from $\alpha_{j}^{+} \backslash\left\{a_{j}^{+}\right\}$; and
2. either: for some $i \in\{j+2, j+3, \ldots, \ell\}$, $a_{j}^{+} \in \alpha_{i}^{-}$; or α_{j+1}^{+}intersects α_{j}^{+}.

Likewise, suppose α_{j}^{-}is a coherent extension of α_{j}. If there is an $\ell \leq j-2$ such that a_{j}^{-}is in $\alpha_{\ell} \backslash\left\{x_{\ell+1}\right\}$, then:
3. for each $i=\ell, \ell+1, \ldots, j-2, \alpha_{i}^{+}$is disjoint from $\alpha_{j}^{-} \backslash\left\{a_{j}^{-}\right\}$; and
4. either: for some $i \in\{\ell, \ell-1, \ldots, j-2\}, a_{j}^{-} \in \alpha_{i}^{+}$; or α_{j-1}^{-}intersects α_{j}^{-}.

Proof. We prove the first statement; the "likewise" is the same, but for the traversal of A in the reverse direction.

By way of contradiction, suppose first that, for some $i \in\{j+2, j+$ $3, \ldots, \ell\}, \alpha_{i}^{-}$intersects $\alpha_{j}^{+} \backslash\left\{a_{j}^{+}\right\}$; let $\times_{i, j^{+}}$be the first intersection with α_{j}^{+} as we traverse α_{i}^{-}from \times_{i}. The interior of the subarc $\alpha_{i}^{-}\left[\times_{i}, \times_{i^{-,}, j^{+}}\right]$of α_{i}^{-} from \times_{i} to $\times_{i, j^{+}}$is on the side of the unique simple closed curve contained in $A \cup \alpha_{j}^{+}$that is opposite to the side that contains $A\left[s, \times_{j+1}\right]$.

See Figure 6 for an illustration of this proof.

Figure 6: Illustration for the proof of Claim 1. (Color online.)

Let α_{j}^{*} be the subarc of γ_{j} consisting of α_{j} and the portion of α_{j}^{+}from \times_{j+1} to $\times_{i, j^{+}}$. Likewise, let α_{i}^{*} be the subarc of γ_{i} consisting of α_{i} and $\alpha_{i}^{-}\left[\times_{i}, \times_{i, j^{+}}\right]$. The arc A^{\prime} with decomposition $\alpha_{0} \ldots \alpha_{j-1} \alpha_{j}^{*} \alpha_{i}^{*} \alpha_{i+1} \ldots \alpha_{m}$ has smaller weight than A. Also, even if $\times_{i, j^{+}}=\times_{j+1}, A^{\prime}$ is a spiral. (In case $\times_{i^{-}, j^{+}}=\times_{j+1}$, then γ_{j}, γ_{j+1}, and γ_{i} all cross at \times_{j+1}. This ensures that
the cyclic rotation of these three curves at \times_{j+1} is $\alpha_{j}, \alpha_{j+1}, \alpha_{i}^{-}, \alpha_{j}^{+}, \alpha_{j+1}^{-}, \beta_{i}$, where β_{i} is the continuation of γ_{i} from $a_{i}^{-}=\times_{i^{-,} j^{+} .}$)

To see that A^{\prime} is coherent, first let C be the simple closed curve ($\alpha_{j}^{*} \backslash$ $\left.\alpha_{j}\right) \cup\left(\alpha_{i}^{*} \backslash \alpha_{i}\right) \cup A\left[\times_{j+1}, \times_{i}\right]$. For each of the segments α^{\prime} of $A^{\prime}, \alpha^{\prime}$ contains some segment α_{k} of A. Let α_{k}^{ε} be a coherent extension of α_{k} for A. Follow α_{k}^{ε} from its end in α_{k} (or, if $k \in\{j, i\}$, from $\times_{i, j^{+}}$). If we never encounter C, then we arrive at A^{\prime} on the same side. On the other hand, if we encounter C, it is not at a point in A and so it is in $\left(\alpha_{j}^{*} \backslash \alpha_{j}\right) \cup\left(\alpha_{i}^{*} \backslash \alpha_{i}\right)$.

Label as the outside of C the side of C containing $A\left[s, \times_{j+1}\right]$. Since α_{k}^{ε} starts on the outside of C, its first intersection with C is from that side. Thus, the portion of α_{k}^{ε} up to that first intersection with C is a coherent extension of α^{\prime}, as required.

To complete the proof that A^{\prime} is coherent, we note that, if, for the segment α of A^{\prime}, both α^{-}and α^{+}are coherent, then they are contained in coherent extensions of the corresponding segment of A. Since these extensions for A are distinct, as extensions for A^{\prime} they are also distinct. Thus, there is a coherent spiral with weight less than m, a contradiction.

For (2), if, for each $i=\ell, \ell+1, \ldots, j-1, a_{j}^{+} \notin \alpha_{i}^{-}$and α_{j+1}^{+}is disjoint from α_{j}^{+}, then α_{j+1}^{+}and (using (1)) each α_{i}^{-}is a coherent extension in $A\left[\times_{j+1}, a_{j}^{+}\right]$. The same argument as in the preceding paragraph shows that $A\left[\times_{j+1}, a_{j}^{+}\right]$is a coherent spiral with smaller weight than A, a contradiction.

The next claim considers "reverse" coherent extensions. This claim rules out the possibility of an extension such as α_{3}^{-}in Figure 4.

Claim 2. There do not exist $j, \ell \in\{0,1,2, \ldots, m\}$ such that $\ell<j$ and α_{j}^{+} is a coherent extension with an end in α_{ℓ}.

Likewise, there do not exist $j, \ell \in\{0,1,2, \ldots, m\}$ such that $j<\ell$ and α_{j}^{-} is a coherent extension with an end in α_{ℓ}.

Proof. We only prove the first statement. Choose the least j for which such an $\ell<j$ exists. Suppose first that $a_{j}^{+} \in \alpha_{j-1}$. Thus, $\gamma_{j-1} \cap \gamma_{j} \supseteq\left\{a_{j}^{+}, \times_{j}\right\}$. Because $\alpha_{j}^{+} \neq \alpha_{j}^{-}, a_{j}^{+} \neq \times_{j}$. Thus, Hypothesis (2.3.1) implies $\gamma_{j-1} \cap \gamma_{j}=$ $\left\{a_{j}^{+}, \times_{j}\right\}$. Let C be the simple closed curve contained in $\alpha_{j-1} \cup \alpha_{j} \cup \alpha_{j}^{+}$. Except for $\times_{j}, \alpha_{j-1}^{+}$is disjoint from C.

Note that a_{j-1}^{+}is not in $\alpha_{j-1} \cup \alpha_{j}$. Therefore, a_{j-1}^{+}and the start of α_{j-1}^{+} from \times_{j} are on different sides of C, which is impossible. Thus, $a_{j}^{+} \notin \alpha_{j-1}$.

The choice of j implies that either α_{j-1}^{+}is not coherent or it does not intersect $A\left[a_{j}^{+}, \times_{j}\right]$. Therefore, α_{j-1}^{+}must intersect $\alpha_{j} \cup \alpha_{j}^{+}$at a point other
than \times_{j}. This gives the two crossings of γ_{j-1} with γ_{j}.
An intersection of α_{j-1}^{-}with γ_{j} yields a third intersection of γ_{j-1} with γ_{j}, and the theorem is proved. Therefore, we assume α_{j-1}^{-}is disjoint from α_{j}^{-}. On the other hand, the choice of j implies that, for each k with \times_{k+1} in the interior of $A\left[a_{j}^{-}, \times_{j}\right], a_{k}^{+} \neq a_{j}^{-}$. Therefore Claim 1 (4) shows α_{j-1}^{-}is not disjoint from α_{j}^{-}, the final contradiction.

We may now suppose that there does not exist an α_{j}^{+}that is a coherent extension with an end in any α_{k} such that $k<j$. Similarly, we may assume that there does not exist an α_{j}^{-}that is a coherent extension with any end in any α_{k} such that $k>j$.

The final claim combines the first two to completely determine the nature of a coherent extension. Before we get to it, we require one more detail.

Claim 3. Let $k \in\{1,2 \ldots, m\}$. Suppose α_{k-1}^{-}is not a coherent extension and that $\gamma_{k} \backslash \alpha_{k}^{-}$has an intersection with γ_{k-1}. Then α_{k}^{-}is not coherent.

Likewise, if α_{k}^{+}is not coherent and $\gamma_{k-1} \backslash \alpha_{k-1}^{+}$has an intersection with γ_{k}, then α_{k-1}^{+}is not coherent.

Proof. We only prove the first statement. Because A is coherent and α_{k-1}^{-} is not a coherent extension, α_{k-1}^{+}is a coherent extension of α_{k-1}. Let \times be the intersection of $\gamma_{k} \backslash \alpha_{k}^{-}$with γ_{k-1}; it follows that $\gamma_{k-1} \cap \gamma_{k} \supseteq\left\{\times_{k}, \times\right\}$. Since $\times \notin \alpha_{k}^{-}, \times$is neither \times_{k} nor a_{k}^{-}. Hypothesis (2.3.1) implies $\gamma_{k-1} \cap \gamma_{k}=$ $\left\{\times_{k}, \times\right\}$.

Since $\alpha_{k}^{-} \backslash\left\{\times_{k}\right\}$ is disjoint from γ_{k-1}; in particular, it is disjoint from α_{k-1}. For $k=1$, the preceding claim implies that α_{k}^{-}is not coherent. Thus, we suppose $k \geq 2$.

The union of α_{k-1}^{-}and $A\left[\times_{k-1}, a_{k-1}^{-}\right]$is a simple closed curve C. Let p be a point of α_{k}^{-}near \times_{k}. From p trace an arc δ alongside α_{k-1}, across α_{k-1}^{-}and, continuing beside A, on to a point near the end \times_{0} of A. Thus, δ is along the side of A faced by all the \times_{i}. Because α_{k-1}^{-}is not coherent, it does not return to A on this side and, therefore, δ crosses α_{k-1}^{-}only once. Consequently, δ crosses C only once.

Suppose by way of contradiction that α_{k}^{-}is a coherent extension of α_{k}. Because α_{k}^{-}does not intersect $\gamma_{k-1} \backslash\left\{\times_{k}\right\}$, it cannot cross C. Therefore, it does not intersect the portion of δ from its crossing with α_{k-1}^{-}to its end near \times_{0}. In particular, α_{k}^{-}has no end in $\alpha_{0} \alpha_{1} \cdots \alpha_{k-2}$. The first paragraph shows α_{k}^{-}is also disjoint from $\alpha_{k-1} \backslash\left\{\times_{k}\right\}$. Thus, a_{k}^{-}is in $A\left[\times_{k+1}, t\right]$, contradicting the preceding claim.

We are now ready to get the fine detail of the coherent extensions of A.
Claim 4. For $0 \leq j \leq m-1$, if α_{j}^{+}is a coherent extension of α_{j}, then $a_{j}^{+} \in \alpha_{j+1}$.

Likewise, for $1 \leq j \leq m$, if α_{j}^{-}is a coherent extension of α_{j}, then $a_{j}^{-} \in \alpha_{j-1}$.

Proof. We only prove the first statement. Suppose that j is least such that α_{j}^{+}is a coherent extension of α_{j} and $a_{j}^{+} \notin \alpha_{j+1}$. We show by induction that, for each $k=0,1, \ldots, j, \alpha_{k}^{-}$is not a coherent extension of α_{k}. For $k=0$, Remark 2.2 shows that α_{0}^{-}is not a coherent extension of α_{0}. Now let $k \geq 1$ and suppose that α_{k-1}^{-}is not a coherent extension of α_{k-1}.

Since A is coherent and α_{k-1}^{-}is not a coherent extension of α_{k-1}, we have that α_{k-1}^{+}is a coherent extension of α_{k-1}. By the choice of $j, a_{k-1}^{+} \in \alpha_{k}$. The preceding claim implies that α_{k}^{-}is not a coherent extension of α_{k}, completing the proof that, for each $k=0,1, \ldots, j, \alpha_{k}^{-}$is not a coherent extension of α_{k}.

Let ℓ be such that $a_{j}^{+} \in \alpha_{\ell} \backslash\left\{x_{\ell}\right\}$. The second claim and the choice of j show that $\ell>j+1$. Part (1) of the first claim implies that, for each $i=j+2, j+3, \ldots, \ell, \alpha_{i}^{-}$is disjoint from $\alpha_{j}^{+} \backslash\left\{a_{j}^{+}\right\}$, while the second claim asserts that $a_{j}^{+} \notin \alpha_{i}^{-}$. Part (2) of the first claim now implies that α_{j+1}^{+} intersects α_{j}^{+}at a point q.

We showed that α_{j}^{-}is not a coherent extension of α_{j} and that α_{j+1}^{+}intersects γ_{j} at \times_{j+1} and q. Consequently, the coherence of A and the preceding claim show that α_{j+1}^{+}is a coherent extension. The second claim shows that, for some $r>j+1, a_{j+1}^{+} \in \alpha_{r} \backslash\left\{\times_{r}\right\}$. The first two claims show that, for each $i=j+3, j+4, \ldots, r, \alpha_{i}^{-}$is disjoint from α_{j+1}^{+}.

Let α_{ℓ}^{*} be the subarc $\alpha_{\ell}\left[\times_{\ell}, a_{j}^{+}\right]$and let A^{\prime} be the arc consisting of α_{j+1}, $\alpha_{j+2}, \ldots, \alpha_{\ell-1}, \alpha_{\ell}^{*}$. Just above, we showed that α_{j+2}^{-}is disjoint from α_{j}^{+}. Therefore, α_{j+2}^{-}is a coherent extension of α_{j+2} with respect to A^{\prime}. The second claim shows that α_{j+2}^{-}has both ends in α_{j+1}.

Since α_{j+2}^{-}intersects α_{j+1} in \times_{j+2} and a_{j+2}^{-}, we see that $a_{j+1}^{+} \notin \alpha_{j+2}$; therefore $r>j+2$. Moreover, it follows that α_{j+2}^{+}is disjoint from α_{j+1}^{+}. This, together with the fact that, for each $i=j+3, j+4, \ldots, r, \alpha_{i}^{-}$is disjoint from α_{j+1}^{+}, contradicts the first claim.

Because A is coherent and Remark 2.2 shows α_{0}^{-}is not a coherent extension of $\alpha_{0}, \alpha_{0}^{+}$is a coherent extension of α_{0}. Likewise, α_{m}^{-}is a coherent extension of α_{m}. It follows that there is a $j \geq 1$ such that α_{j-1}^{+}is a coherent extension of α_{j-1} and α_{j}^{-}is a coherent extension of α_{j}. The fourth claim
implies that both ends of α_{j-1}^{+}are in α_{j} and both ends of α_{j}^{-}are in α_{j-1}. This implies that $\left|\gamma_{j-1} \cap \gamma_{j}\right| \geq 3$, completing the proof that (2.3.1) \Rightarrow (2.3.2).
$(2.3 .2) \Rightarrow(2.3 .4)$. For this argument, we will make use of the following trivial observation.

Observation 2.4. Let Q, R, S be arcs in the sphere such that R and S both have their ends in Q, but otherwise are disjoint from Q. We assume R and S have finitely many intersections and these are all crossings.

Assume that short subarcs of S starting at each end of S are on different sides of the unique simple closed curve in $R \cup Q$. Then $(R \cap S) \backslash Q$ has at least one point.

By way of contradiction, let A be a least-weight spiral in $P(\Gamma)$ having no segment external for A. Since the only segment in an arc of weight 0 is external for that arc, A has positive weight m. Let $\alpha_{0} \alpha_{1} \cdots \alpha_{m}$ be the decomposition of A.

By assumption, A is incoherent; let α_{i} be an incoherent segment of A. By definition, both α_{i}^{-}and α_{i}^{+}are both incoherent extensions. Thus, short subarcs near their ends a_{i}^{-}and a_{i}^{+}are on the side of A that is opposite the side faced by all the crossings $\times_{1}, \ldots, \times_{m}$. We remark that one or both of a_{i}^{-}and a_{i}^{+}might be in $\left\{\times_{0}, \times_{m+1}\right\}$. If $i=0$, then only the subarc near a_{0}^{+} is forced by incoherence to be on the side of A not faced by the crossings; the fact that γ_{0} is a simple closed curve implies a_{0}^{-}is as well. An analogous statement applies if $i=m$.

As we traverse A from \times_{0} to \times_{m+1}, we first encounter a_{i}^{-}and then a_{i}^{+}(these could be equal). Therefore, either $a_{i}^{-} \in \alpha_{0} \alpha_{1} \cdots \alpha_{i-1}$ or $a_{i}^{+} \in$ $\alpha_{i+1} \alpha_{i+2} \cdots \alpha_{m}$. As these are symmetric up to reversal of A, we assume the latter.

Let B be the spiral $\alpha_{i+1} \alpha_{i+2} \cdots \alpha_{m}$; evidently, its weight is less than that of A. Therefore, B has a segment α_{j} that is external for B. Notice that the side of B faced by all its crossings is separated from $A\left[\times_{0}, \times_{i+1}\right] \backslash\left\{\times_{i+1}\right\}$ by the simple closed curve $A\left[\times_{i+1}, a_{i}^{+}\right] \cup \alpha_{i}^{+}$.

Since no segment of A is external for A, γ_{j} intersects A at a point outside α_{j}. This implies that α_{j}^{-}and α_{j}^{+}intersect A at points a_{j}^{-}and a_{j}^{+}, respectively, that are not in α_{j}. Since α_{j} is external for B, a_{j}^{-}and a_{j}^{+}are in $A \backslash B$.

Claim 5. Traversing α_{j}^{-}and α_{j}^{+}from \times_{j} and \times_{j+1}, respectively, they each have an intersection with α_{i}^{+}and these intersections are distinct points of α_{i}^{+}.

Proof. In an extreme case, $j=i+1$; here \times_{i+1} is the required common point between α_{j}^{-}and α_{i}^{+}. In the other extreme case, $a_{i}^{+}=\times_{m+1}$ and $j=m$; here \times_{m+1} is the common point between α_{j}^{+}and α_{i}^{+}. (These could happen simultaneously.) Otherwise, \times_{j} and \times_{j+1} are interior points of B.

If we take $Q=A, R=\alpha_{i}^{+}$and S to be either α_{j}^{-}or α_{j}^{+}, then Observation 2.4 implies there are distinct points, one in each of $\left(\alpha_{i}^{-} \cap \alpha_{j}^{+}\right) \backslash A$ and $\left(\alpha_{i}^{+} \cap\right.$ $\left.\alpha_{j}^{+}\right) \backslash A$.

Since $\left|\gamma_{i} \cap \gamma_{j}\right| \leq 2$, the only points in $\gamma_{i} \cap \gamma_{j}$ are the points in each of $\alpha_{j}^{-} \cap \alpha_{i}^{+}$and $\alpha_{j}^{+} \cap \alpha_{i}^{+}$. In particular, α_{j}^{-}and α_{j}^{+}are both disjoint from $\alpha_{i}^{-} \backslash\left\{a_{i}^{-}\right\}$.

Because $a_{j}^{-} \notin B$ and α_{j}^{-}is disjoint from $\alpha_{i}^{-} \backslash\left\{a_{i}^{-}\right\}, a_{j}^{-} \in A\left[\times_{0}, \times_{i}\right]$. On the other hand, the disjointness of α_{j}^{-}with $\alpha_{i}^{-} \backslash\left\{a_{i}^{-}\right\}$implies that a_{i}^{-}is not further from \times_{0} in A than a_{j}^{-}is. In turn, this implies that a_{i}^{-}is in $A\left[\times_{0}, \times_{i}\right] \backslash\left\{\times_{i}\right\}$. Therefore, reversing the direction of traversal of A, α_{i}^{-}may play the role of α_{i}^{+}in the preceding argument.

Thus, there is a $k \in\{0,1, \ldots, i-1\}$ such that α_{k} is a segment of $\alpha_{0} \alpha_{1} \cdots \alpha_{i-1}$, external for $\alpha_{0} \alpha_{1} \cdots \alpha_{i-1}$, but not external for A. The argument above for α_{i}^{+}and α_{j} applies to α_{i}^{-}and α_{k}. Thus, α_{k}^{-}and α_{k}^{+}have their endpoints a_{k}^{-}and a_{k}^{+}, respectively, in $A\left[\times_{i+1}, \times_{m+1}\right] \backslash\left\{\times_{i+1}\right\}$. Observation 2.4 implies that each of α_{j}^{-}and α_{j}^{+}has an intersection with each of α_{k}^{-}and α_{k}^{+}. In particular, $\gamma_{j} \cap \gamma_{k}$ has at least four points. This contradicts (2.3.1), which is equivalent to (2.3.2).

3 A pseudocircle transversal

We recall that the proof of Theorem 1.1 has two parts. For our current set Γ of pairwise intersecting pseudocircles, we must (i) find a pair of initial approximations to the pseudocircle for the next edge and (ii) show that the pair of approximations imply the existence of the desired curve crossing all the curves in Γ. In this section, our focus is on the second of these parts.

In particular, in Section 6, we will show how to find two initial approximations that together intersect all the curves in our current Γ. The main result of this section is to use these two approximations to find the single curve that intersects all the curves in Γ.

We are reminded of the theorems that are:

- Helly-type: if a collection of sets is such that every k of the sets admits a transversal, then the whole collection admits a transversal; and
- Gallai-type: if a collection of sets is such that every k of the sets admits a transversal, then the whole admits a small set of partial transversals whose union is a transversal.
Our theorem has the following different character: if a collection of sets admits a small set of partial transversals whose union is a transversal, then it admits a transversal. We do not know of another example of this type of theorem.

Definition 3.1. Let Γ be an arrangement of pseudocircles.

- A set Λ of simple closed curves is a Γ-transversal if every curve in Γ intersects at least one of the curves in Λ.
- A simple closed curve γ is a Γ-pseudocircle if $\Gamma \cup\{\gamma\}$ is an arrangement of pseudocircles.

Theorem 3.2. Let Γ be an arrangement of pseudocircles. Let γ_{1} and γ_{2} Γ-pseudocircles such that $\left\{\gamma_{1}, \gamma_{2}\right\}$ is a Γ-transversal. Suppose
(3.2.1) $\gamma_{1} \cap \gamma_{2}$ is a non-trivial arc and
(3.2.2) if $\delta_{1}, \delta_{2} \in \Gamma$ are such that $\delta_{1} \cap \gamma_{1}=\varnothing$ and $\delta_{2} \cap \gamma_{2}=\varnothing$, then $\delta_{1} \cap \delta_{2} \neq \varnothing$.

Then there exists a Γ-pseudocircle γ containing $\gamma_{1} \cap \gamma_{2}$ and $\gamma \backslash\left(\gamma_{1} \cap \gamma_{2}\right)$ is contained in the closure of the face F of $\gamma_{1} \cup \gamma_{2}$ not incident with $\gamma_{1} \cap \gamma_{2}$.

Our proof shows that one can sweep either of γ_{1} or γ_{2} to the required γ. In their classic paper [25], Snoeyink and Hershberger show how to sweep one curve through the others in an arrangement of pseudoarcs and pseudocircles. In particular, up to sweeping, γ is unique.

In the proof of Theorem 1.1, any two curves in the current Γ intersect, so Hypothesis (3.2.2) holds automatically.

Proof of Theorem 3.2. Let $\sigma=\gamma_{1} \cap \gamma_{2}$ and, for $i=1$, 2 , let

$$
\Gamma_{i}=\left\{\delta \in \Gamma: \delta \cap \gamma_{i} \neq \emptyset\right\} .
$$

Because $\left\{\gamma_{1}, \gamma_{2}\right\}$ is a Γ-transversal, $\Gamma_{1} \cup \Gamma_{2}=\Gamma$. Let $n=n\left(\Gamma, \gamma_{1}, \gamma_{2}\right)=$ $\left|\Gamma_{2} \backslash \Gamma_{1}\right|$. Define $k=k\left(\Gamma, \gamma_{1}, \gamma_{2}\right)$ as the number of crossings in $P(\Gamma)$ included in the face F of $\gamma_{1} \cup \gamma_{2}$ not incident with σ. We proceed by induction on $n+k$.

We can assume that neither $\Gamma_{1} \backslash \Gamma_{2}$ nor $\Gamma_{2} \backslash \Gamma_{1}$ is empty, else we pick γ to be either equal to γ_{2} or γ_{1}.

If there is an $\operatorname{arc} \alpha$ of some $\delta \in \Gamma_{2} \backslash \Gamma_{1}$ incident with a face of $P(\Gamma \cup$ $\left.\left\{\gamma_{1}, \gamma_{2}\right\}\right)$ that is included in F and incident with γ_{1}, then by shifting some part of γ_{1} to cross α via a Reidemeister Type II move, we obtain a curve γ_{1}^{\prime} such that the pair $\left(\gamma_{1}^{\prime}, \gamma_{2}\right)$ satisfies the same hypothesis as $\left(\gamma_{1}, \gamma_{2}\right)$. Since $n\left(\Gamma, \gamma_{1}^{\prime}, \gamma_{2}\right)+k\left(\Gamma, \gamma_{1}^{\prime}, \gamma_{2}\right)<n\left(\Gamma, \gamma_{1}^{\prime}, \gamma_{2}\right)+k\left(\Gamma, \gamma_{1}^{\prime}, \gamma_{2}\right)$, the result follows by induction.

In the alternative, there exists an arc A with ends in $\gamma_{2} \backslash \sigma$, but otherwise contained in $F \cap P\left(\Gamma_{1} \cup\left\{\gamma_{1}\right\}\right)$, such that $\gamma_{2} \cup A$ separates $\gamma_{1} \backslash \sigma$ from $P\left(\Gamma_{2} \backslash\right.$ $\left.\Gamma_{1}\right) \cap F$. Let Δ_{A} be the closure of the component of $F \backslash A$ that is incident with both A and $\gamma_{1} \backslash \sigma$. Among the finitely many choices for A, we choose A so that Δ_{A} is minimal under inclusion. See Figure 7.

Figure 7: The region Δ_{A}.
We apply Theorem 2.3 , specifically (2.3.1) \Rightarrow (2.3.2), to see that there is a crossing in A facing Δ_{A}. The proof is by contradiction, assuming that every crossing faces the other side of A. In particular, A is a spiral; the contradiction arises from the following.
Claim 1. There is a crossing in A facing Δ_{A}.
Proof. By way of contradiction, suppose every crossing faces the other side of A; in particular, A is a spiral. We show that A is coherent, contradicting

Theorem 2.3 (specifically, $(2.3 .1) \Rightarrow(2.3 .2)$). It suffices to show that if α is an arc in the decomposition of A, then α is coherent. Let δ be the curve in Γ_{1} containing α.

Let B be the closed arc in $\gamma_{2} \backslash \sigma$ such that $A \cup B$ is a simple closed curve. Consider the continuation of δ from one end of α. Since δ crosses γ_{1} twice, the continuation must eventually reach γ_{1}; in particular, it must have a first intersection with $A \cup B$.

We show below that it is impossible for both continuations to have these first intersections in B. Therefore, for one of them, the first intersection is in the interior of A, showing that α is coherent.

So suppose both continuations intersect B for the first time at p_{1} and p_{2}. Since $\left|\gamma_{2} \cap \delta\right| \leq 2, \gamma_{2} \cap \delta=\left\{p_{1}, p_{2}\right\}$. Therefore, δ is contained in the region bounded by $A \cup\left(\gamma_{2} \backslash B\right)$ and intersects the boundary of this region only at α. This shows that $\delta \notin \Gamma_{1}$, the required contradiction.

Claim 2. Let $\delta \in \Gamma$. Then every arc in $\delta \cap \Delta_{A}$ has one end in the interior of $\gamma_{1} \backslash \sigma$ and one end not in the interior of $\gamma_{1} \backslash \sigma$.

Proof. Let β be an $\operatorname{arc} \delta \cap \Delta_{A}$. If β has no end in $\gamma_{1} \backslash \sigma$, then $\beta \cup A$ contains an arc A^{\prime} that separates $\gamma_{1} \backslash \sigma$ from $P\left(\Gamma_{2}\right) \cap F$ such that $\Delta_{A^{\prime}}$ is properly contained in Δ_{A}, contradicting the choice of A.

If β has no end in the complement of the interior of $\gamma_{1} \backslash \sigma$ in the boundary of Δ_{A}, then β is contained in Δ_{A} and has both ends in the interior of $\gamma_{1} \backslash \sigma$. Since $\delta \cap \gamma_{1}$ has exactly two points, these are the two ends of β. The preceding paragraph shows that β is the only arc in $\delta \cap \Delta_{A}$, and hence $\delta \backslash \beta$ is included in the side of γ_{1} disjoint from $\gamma_{2} \backslash \sigma$. Thus, for any $\delta^{\prime} \in \Gamma_{2} \backslash \Gamma_{1}$, since $\delta^{\prime} \cap \Delta_{A}$ and $\delta^{\prime} \cap \gamma_{1}$ are empty, this implies that $\delta \cap \delta^{\prime}=\emptyset$, contradicting (3.2.2).

Claim 1 implies there are distinct elements δ, δ^{\prime} of Γ_{1} that have a crossing \times in A through which they proceed into the Δ_{A}-side of A. Claim 2 shows both extensions from this crossing are arcs ρ and ρ^{\prime} in δ and δ^{\prime}, respectively, joining \times to their ends a and a^{\prime}, respectively, in the interior of $\gamma_{1} \backslash \sigma$. All intersections of δ and δ^{\prime} with γ_{1} are crossings, so this is true in particular for a and a^{\prime}.

Since ρ and ρ^{\prime} cross at \times, they have at most one other crossing. Let $\times{ }^{*}$ be that other crossing if it exists; otherwise x^{*} is \times. The union of the subarcs of ρ from a to $\times^{*}, \rho^{\prime}$ from a^{\prime} to \times^{*}, and $\gamma_{1} \backslash \sigma$ from a to a^{\prime} is a simple closed curve λ in the closed disc Δ_{A}.

We aim to show that the interiors of the $\operatorname{arcs} \rho \cap \lambda$ and $\rho^{\prime} \cap \lambda$ are not crossed by any curve in Γ. If not, then there is a $\mu \in \Gamma$ that crosses, say, $\rho \cap \lambda$. By Claim 2, the component of $\mu \cap \Delta_{A}$ containing this crossing has a subarc μ^{\prime} with one end in ρ and one end in the interior of A. We may assume μ^{\prime} has no other intersection with ρ.

There is an $\operatorname{arc} A^{\prime} \neq A$ in $A \cup \mu^{\prime} \cup \rho_{e}$ that separates the interior of $\gamma_{1} \backslash \sigma$ from $P\left(\Gamma_{2}\right) \cap F$. However, $\Delta_{A^{\prime}}$ is a proper subset of Δ_{A}. This contradiction shows that no curve in Γ intersects either $\rho \cap \lambda$ or $\rho^{\prime} \cap \lambda$.

It follows that we can perform the equivalent of a Reidemeister III move to shift the portion of γ_{1} between a and a^{\prime} across \times^{*}. (It is possible that $a=a^{\prime}$. In this case, we still do the Reidemeister III move, starting by shifting γ_{1} into the face bounded by λ. In the context of Theorem 1.1, this actually does not occur.) If γ_{1}^{\prime} is the resulting curve, then $n^{\prime}\left(\Gamma, \gamma_{1}^{\prime}, \gamma_{2}\right)=n$, $k^{\prime}\left(\Gamma, \gamma_{1}^{\prime}, \gamma_{2}\right)=k-1$, and hence the result follows from the induction.

4 h -Convex and pseudospherical drawings

In this section we introduce h-convex drawings and prove the easy implication (1.1.2) \Rightarrow (1.1.3).

The following notions were introduced by Arroyo et al. [12]. (Here, for a drawing D of a graph G, if T is a subgraph of D, then $D[T]$ denotes the subdrawing of D induced by T. If T is just an edge e and its ends or has vertex set S and no edges, then we write simply $D[e]$ or $D[S]$, respectively.)
Definition 4.1. Let D be a drawing in the sphere of the complete graph K_{n} in which any two edges have at most one point in common and that this point, if it exists, is either a common incident vertex or a crossing point.
(4.1.1) Let T be a 3-cycle in K_{n}. A closed disc Δ bounded by $D[T]$ is a convex side of $D[T]$ if, for every two vertices x, y such that $D[\{x, y\}] \subseteq \Delta$, then $D[x y] \subseteq \Delta$.
(4.1.2) The drawing D is convex if, for every 3 -cycle T in $K_{n}, D[T]$ has a convex side.
(4.1.3) If D is convex, then D is h-convex (short for "hereditarily convex") if there is a set \mathcal{C} consisting of, for every 3 -cycle T of K_{n}, a convex side Δ_{T} such that, for two 3-cycles T, T^{\prime}, if $D[T] \subseteq \Delta_{T^{\prime}}$, then $\Delta_{T} \subseteq \Delta_{T^{\prime}}$.
(4.1.4) The drawing D is f-convex (short for "face convex") if there is a face F of $D\left[K_{n}\right]$ such that, for every 3 -cycle T of K_{n}, the closed disc Δ_{T} bounded by $D[T]$ and disjoint from F is convex.

A pseudolinear drawing of K_{n} in the plane is evidently homeomorphic to an f-convex drawing in the sphere. The converse is proved in [10]: taking a witnessing face of an f-convex drawing of K_{n} in the sphere to be the outer face yields a pseudolinear drawing of K_{n} in the plane.

Arrangements of pseudolines naturally correspond to rank 3 oriented matroids [13, Def. 5.3.1]. Theorem 1.1 shows that an h-convex drawing of K_{n} is also equivalent by Reidemeister III moves to a rank 3 oriented matroid.

Clearly f-convex drawings are h-convex and h-convex drawings are convex. Evidence is given in [12] to support the conjecture that every crossingminimal drawing of K_{n} is convex. A polynomial-time algorithm recognizing h-convexity follows from their result that a drawing of K_{n} is h-convex if and only if it does not contain as a subdrawing any of the three drawings (two of K_{5} and one of K_{6}) shown in Figure 8. We do not need this result here and there is little overlap of this work with [12].

Ábrego et al $[6$, Sec. $4.3,4.4]$ show that every crossing-minimal 2-page drawing D of K_{n} has, up to symmetry, a certain matrix representation of D. It is assumed that the spine of the drawing is the x-axis and each edge is drawn either in the closed upper half plane H^{+}having $y \geq 0$ or in the closed lower half plane H^{-}having $y \leq 0$. For n even, they show there is a unique such drawing, while for n odd, there are some options.

For n even, it is quite straightforward to verify convexity and h-convexity of D by choosing a particular side of each 3 -cycle $x y z$. If all three of $x y, x z, y z$ are in the same one of H^{+}and H^{-}, then the convex side of $x y z$ is the bounded side of $x y z$. If $x y$ and $y z$ are in, say, H^{+}but $x z$ is not, then there are two cases. If y-the vertex incident with both H^{+}-edges - is in the middle of x, y, z in the linear order on S, then the unbounded side of $x y z$ is the convex side. Otherwise, y is an end of the ordering of x, y, z on S and the bounded side is the convex side.

The verification of convexity is very simple; h-convexity requires some additional thinking. Since it is outside the scope of this work, we omit these discussions. Moreover, for n odd, it is not at all obvious that our arguments hold. In the case n is odd, the locations of some edges are not determined in [6]. We expect to be able to provide a detailed analysis of this case in a separate note, which would also include the analysis above for n even.

Figure 8: The three obstructions for h-convexity.

Our principal goal is to prove Theorem 1.1. As mentioned in the introduction, the implication $(1.1 .1) \Rightarrow(1.1 .2)$ is trivial. To see the implication $(1.1 .2) \Rightarrow(1.1 .3)$, let e, f, and g be the three edges of a 3 -cycle T, contained in pseudocircles γ_{e}, γ_{f}, and γ_{g}, respectively. For each $x \in\{e, f\}$, (PS3) shows that the open arc $\gamma_{x} \backslash D[x]$ is contained in one of the two open sides of $D[T]$. Since the γ_{x} cross at their common vertices, it follows that one open side of $D[T]$ is disjoint from all of γ_{e}, γ_{f}, and γ_{g}; we set Δ_{T} to be the closure of this side of $D[T]$.

To see that Δ_{T} is convex, let u, v be vertices in Δ_{T}. Then u and v are on the same side of each of γ_{e}, γ_{f}, and γ_{g} and so (PS3) shows $u v$ does not cross any of γ_{e}, γ_{f}, and γ_{g}. In particular, $u v$ does not cross $D[T]$, so Δ_{T} is indeed convex.

For h-convexity, suppose a second 3 -cycle $u v w$ is drawn in Δ_{T}. Then (PS2) shows that, for example, $\gamma_{u v}$ must cross each of γ_{e}, γ_{f}, and γ_{g}. Therefore, the side of $D[u v w]$ contained in Δ_{T} is $\Delta_{u v w}$, as required.

The proof of the remaining implication in Theorem 1.1 is given in Section 6. Section 5 provides the necessary discussion of h-convex drawings required to obtain an appropriate initial approximation of the simple closed curve for the "next" edge of K_{n} to extend a (partial) collection of curves satisfying (PS1)-(PS3).

5 h-convex drawings

Our main goal now is to prove the remaining part of Theorem 1.1: an hconvex drawing of K_{n} extends to simple closed curves that satisfy (PS1), (PS2), and (PS3). The proof, given in the next section, requires three facts about h-convex drawings of K_{n} : Lemmas 5.2, 5.3, and 5.4 below. The latter two are straightforward consequences of the first. However, the proof of the
first is elucidated in this section through a fairly long series of lemmas.
The reader may skip the proof of Lemma 5.2 in order to proceed directly to the proof of Theorem 1.1.

Notation 5.1. Let D be an h-convex drawing of K_{n} and let \mathcal{C} be a particular choice of convex sides of the 3 -cycles witnessing the h-convexity of D as in Definition (4.1.3). Let e be any edge of K_{n} with an arbitrary orientation from one end of e to the other.
(HC1) Set Σ_{e}^{1} to be the set of all vertices v of K_{n} not incident with e such that the side in \mathcal{C} of the 3 -cycle containing v and e is the left side, relative to the given orientation of e. The remaining vertices not incident with e have their convex side that is in \mathcal{C} relative to e on the right and they make up Σ_{e}^{2}.
(HC2) For $i=1,2$, we set D_{e}^{i} to be the subdrawing of D of the complete subgraph induced by Σ_{e}^{i} and the ends of e.

Our next lemma is the main point of this section. Its proof follows its two straightforward consequences.

Lemma 5.2. Let D be an h-convex drawing of K_{n} with a specified witnessing set of convex sides. For $i=1,2$, if Σ_{e}^{i} is not empty, then there is a closed disc Δ_{e}^{i} containing D_{e}^{i} and bounded by a cycle C_{e}^{i} of K_{n} containing e and whose vertices are otherwise contained in Σ_{e}^{i}. Furthermore, $\Delta_{e}^{1} \cap \Delta_{e}^{2}$ consists of $D[e]$ and its ends.

Figure 9: Illustrating the consequence of Lemma 5.2.

Figure 5 illustrates the conclusion of Lemma 5.2. Before the proof, we give two simple consequences, which are also used in the next section.

The first simple consequence is about edges not in either Δ_{e}^{1} or Δ_{e}^{2}. Recall that \mathbb{S}^{2} denotes the sphere. For $e \in E\left(K_{n}\right)$, set $F_{e}=\mathbb{S}^{2} \backslash\left(\Delta_{e}^{1} \cup \Delta_{e}^{2}\right)$.

Lemma 5.3. Let D be an h-convex drawing of K_{n} with a specified witnessing set of convex sides and e and e^{\prime} be distinct edges of K_{n}. If $D\left[e^{\prime}\right]$ has a point in F_{e}, then e^{\prime} has an end in each of Σ_{e}^{1} and Σ_{e}^{2}.

Proof. Let u and v be the ends of e. We prove the contrapositive. Suppose that for some $k \in\{1,2\}, e^{\prime}$ has both ends in $\{u, v\} \cup \Sigma_{e}^{k}$. Then $D\left[e^{\prime}\right]$ is contained in Δ_{e}^{k} by Lemma 5.2, so $D\left[e^{\prime}\right] \cap F_{e}=\varnothing$.

We need some notation for the next lemma. For distinct edges e, e^{\prime} of K_{n}, label each vertex of C_{e}^{1} (from Lemma 5.2) with 1, 2, 3, respectively, to indicate it is in $\Sigma_{e^{\prime}}^{1}$, in $\Sigma_{e^{\prime}}^{2}$, or incident with e^{\prime}.

Lemma 5.4. Suppose D is an h-convex drawing of K_{n} with a specified witnessing set of convex sides, e, e^{\prime} edges of K_{n}, and the labelling of C_{e}^{1} as in the preceding sentence. Then there is no 1,2,1,2 pattern in the cyclic order around C_{e}^{1}.

Proof. Otherwise, there are four vertices $v_{1}, v_{2}, v_{3}, v_{4}$ of C_{e}^{1} in this cyclic order with v_{1}, v_{3} having label 1 and v_{2}, v_{4} having label 2 . As all v_{i} are in Σ_{e}^{1}, the definition of C_{e}^{1} implies $v_{1} v_{3}$ crosses $v_{2} v_{4}$ in D_{e}^{1}.

However, the edge $v_{1} v_{3}$ is in $D_{e^{\prime}}^{1}$, while $v_{2} v_{4}$ is in $D_{e^{\prime}}^{2}$. Lemma 5.3 shows that both $v_{1} v_{3}$ and $v_{2} v_{4}$ are contained in Δ_{e}^{1}, so they cross in D. However, Lemma 5.2 implies they do not cross, a contradiction.

The remainder of this section is devoted to the proof of Lemma 5.2. In the arguments below, we will use, without particular reference, the following observation: if e and f are crossing edges, then each of the four 3 -cycles in the unique K_{4} containing e and f has a side (the one containing the fourth vertex of the K_{4}) that is definitely not convex. Our drawings are convex, so, for such a 3-cycle, the convex side that is in \mathcal{C} is determined. If C is the 4 -cycle bounding a face of this K_{4}, then the closed disc bounded by $D[C]$ and containing $D[\{e, f\}]$ is the crossing side of $D[C]$.

Lemma 5.5. Let D be an h-convex drawing of K_{n} with a specified witnessing set of convex sides, and let e be an edge of K_{n}. Let $i \in\{1,2\}$ and suppose $\left|\Sigma_{e}^{i}\right| \geq 1$.
(i) In D_{e}^{i}, e is not crossed. In particular, there is a face F_{e}^{i} of D_{e}^{i} incident with e and containing $\Sigma_{e}^{(3-i)}$.
(ii) If J is any crossing K_{4} in D_{e}^{i}, then F_{e}^{i} is contained in the face of $D[J]$ bounded by a 4-cycle. In particular, no crossing of D_{e}^{i} is incident with F_{e}^{i}, so F_{e}^{i} is bounded by a cycle in D_{e}^{i}.
Proof. If e were crossed by an edge f in D_{e}^{i}, then the crossing K_{4} shows that the two ends of f are not both in the same one of Σ_{e}^{1} and Σ_{e}^{2}, a contradiction. Thus, e is not crossed and is incident with exactly two faces of $D_{e}^{i} ; F_{e}^{i}$ is the one containing $\Sigma_{e}^{(3-i)}$, completing (i).

For (ii), let C be the 4 -cycle in J bounding a face of $D[J]$. We rule out one trivial case immediately. If e is in J, then, since e is not crossed in D_{e}^{i}, it is in C. The convex sides (these are unique and in \mathcal{C}) of each 3 -cycle in J are all on the crossing side of $D[C]$. Since the two vertices of J not incident with e are in $\Sigma_{e}^{i}, F_{e}^{i}$ is contained in the face of $D[J]$ bounded by C, as required.

Therefore, we may assume there is a vertex u incident with e and not in J. As e is not crossed in $D_{e}^{i}, D[e]$ is contained in one of the faces F of $D[J]$. Since $D[u]$ is incident with F_{e}^{i}, F is also the face of $D[J]$ containing F_{e}^{i}. We are done if F is bounded by a 4 -cycle in J, so we assume, by way of contradiction, that F is incident with the crossing of $D[J]$.

Convexity implies that the edges joining u to the vertices of J are all contained on the crossing side of $D[C]$. Thus, C, u, and these four edges constitute a planar embedding of the 4 -wheel W. Each of the four 3-cycles in W has its convex side on the crossing side of $D[C]$: three of these 3-cycles are contained in convex sides of 3-cycles of J, so for them the assertion follows from h-convexity; the fourth is in a crossing K_{4} on the crossing side of $D[C]$.

If e is one of the edges of W, then the end of e different from u has two neighbours in C that are in different ones of Σ_{e}^{1} and Σ_{e}^{2}, a contradiction. If e is not in W, then its other end v is in one of the four faces of $D[W]$ incident with u. This implies that v is on the convex side of the bounding 3 -cycle and the two vertices of C in this 3-cycle are in different ones of Σ_{e}^{1} and Σ_{e}^{2}, a contradiction.

For $i=1,2$, if $\Sigma_{e}^{i} \neq \varnothing$, then let C_{e}^{i} be the cycle in D_{e}^{i} that is the boundary of F_{e}^{i}. All its vertices not incident with e are, by definition, in Σ_{e}^{i}. Note that, with F_{e} as defined preceding Lemma 5.3, $F_{e}=F_{e}^{1} \cap F_{e}^{2}$.

We are aiming to show that, for any three vertices in D_{e}^{i}, the specified convex side that they bound is contained in the side of $D\left[C_{e}^{i}\right]$ not containing F_{e}^{i}. In particular, this shows that D_{e}^{i} is f-convex. This is our next lemma.

We remark that the main result of [10] further implies that D_{e}^{i} is pseudolinear. Thus, any edge e of an h-convex drawing partitions the vertices into
two pseudolinear subdrawings D_{e}^{1} and D_{e}^{2}. This generalizes the fact that, in a spherical drawing, for each great circle C that contains an edge, the vertices in either closed side of C induce a rectilinear drawing.

Lemma 5.6. Let D be an h-convex drawing of K_{n} with witnessing set $\left\{\Delta_{T} \mid\right.$ T is a 3-cycle of $\left.K_{n}\right\}$ of convex sides. Let e be an edge of K_{n} and let $i \in$ $\{1,2\}$. With D_{e}^{i} as in Notation 5.1, if $\left|\Sigma_{e}^{i}\right| \geq 1$, then, for each 3-cycle T in $D_{e}^{i}, \Delta_{T} \cap F_{e}^{i}=\varnothing$. In particular, D_{e}^{i} is f-convex.

Proof. Let uvw be a 3 -cycle in D_{e}^{i}. Suppose first that there is an edge f with both ends in C_{e}^{i} that crosses $u v w$. If f has one end in $u v w$, then Lemma 5.5 (ii) shows the crossing in the K_{4} that includes u, v, w, and f is separated from F_{e}^{i} by the face-boundary 4 -cycle in the K_{4}. Therefore, the convex side of each of the four 3-cycles in the K_{4} is the side that is disjoint from F_{e}^{i}. In particular, this holds for $u v w$, as required.

In the remaining case, both vertices incident with f are in the side of $u v w$ that contains F_{e}^{i}. In this case, Definition 4.1 (4.1.1) of convex side shows it is the other side, the one disjoint from F_{e}^{i}, that is convex, as required. Therefore, we can assume no edge having both ends in C_{e}^{i} crosses uvw.

Suppose that C_{e}^{i} has at least four vertices and let a and b be any two vertices of C_{e}^{i}, neither of which is an end of e, and consider the K_{4} containing a, b, and e. As a, b, and e are all incident with F_{e}^{i}, this K_{4} has a face incident with all four of its vertices. It follows that this is a crossing K_{4}. Lemma 5.5 implies that the crossing in this K_{4} is separated from F_{e}^{i} by the face-bounding 4 -cycle. Thus, all the 3 -cycles in this K_{4} have their convex side disjoint from F_{e}^{i}. Although this was already known for the two 3-cycles containing e, we now know it for the two 3 -cycles containing the edge $a b$.

Finally, if C_{e}^{i} has only three vertices, then the result follows from hconvexity. Otherwise, let y be one of the ends of e and consider C_{e}^{i} together with all the chords from y. By the preceding paragraph, all of the 3-cycles using two of these edges incident with y and an edge of C_{e}^{i} have their convex side disjoint from F_{e}^{i}. From the earlier discussion, none of these chords crosses $u v w$. It follows that $u v w$ is contained in the convex side of one of them; this convex side is disjoint from F_{e}^{i}. Thus, the chosen convex side for $u v w$ is, by h-convexity, disjoint from F_{e}^{i}.

The remaining detail about h-convex drawings we need is that $D_{e}^{1} \subseteq F_{e}^{2}$ and $D_{e}^{2} \subseteq F_{e}^{1}$. As mentioned after the proof Lemma $5.5, C_{e}^{i}$ is the boundary
of the face F_{e}^{i} of D_{e}^{i}. The other closed disc in the sphere bounded by $D\left[C_{e}^{i}\right]$ is denoted Δ_{e}^{i}. Evidently, $D\left[\Sigma_{e}^{i}\right] \subseteq \Delta_{e}^{i}$. We begin by showing that $\Sigma_{e}^{2} \cap \Delta_{e}^{1}=\varnothing$.

Lemma 5.7. Let D be an h-convex drawing of K_{n} with a specified witnessing set of convex sides. Let $e=u v$ be an edge of K_{n} and $i \in\{1,2\}$, and let Σ_{e}^{i} and D_{e}^{i} be as in Notation 5.1. For $w \in V(G) \backslash\{u, v\}$, if $D[w] \subseteq \Delta_{e}^{i}$, then $w \in \Sigma_{e}^{i}$.

Proof. Suppose that $D[w] \subseteq \Delta_{e}^{1}$. If C_{e}^{1} is a 3 -cycle, then its convex side Δ_{e}^{1} contains w; h-convexity implies that the 3 -cycle including w and e is contained in Δ_{e}^{1}, and hence $w \in \Sigma_{e}^{1}$. Thus, we may assume that C_{e}^{1} has length at least 4.

For each edge $a b \in C_{e}^{1}-e$, let $J_{a b}$ denote the crossing K_{4} in D induced by e and $a b$. The closed disc Δ_{e}^{1} is the union of the crossing sides of the $J_{a b}$, so $D[w]$ is contained in the crossing side of some $J_{a b}$. Since $J_{a b}$ is a crossing K_{4}, the convex sides of all the 3 -cycles in $J_{a b}$ are determined.

If $D[w]$ is contained in the convex side of one of the 3 -cycles $D[a u v]$ or $D[b u v]$, then it follows from h-convexity that this side contains the convex side of $D[w u v]$ that is in \mathcal{C}, and thus $w \in \Sigma_{e}^{1}$. Therefore we may assume that $D[w]$ is contained in the convex sides of both $D[a b u]$ and $D[a b v]$. Consequently, $D[w u]$ is contained in the convex side of $D[a b u]$ and $D[w v]$ is contained in the convex side of $D[a b v]$. The K_{4} with vertices a, w, u, v has a crossing in D and determines the convex side of the 3 -cycle containing w and e, and therefore shows that $w \in \Sigma_{e}^{1}$.

Next we move on to edges. The following result is preparatory to showing edges of D_{e}^{1} and D_{e}^{2} do not cross.

Lemma 5.8. Let D be an h-convex drawing of K_{n} with a specified witnessing set of convex sides. If, for $i=1,2, x_{i} \in \Sigma_{e}^{i}$, then the 3-cycles induced by x_{1}, e and x_{2}, e do not cross in D.

Proof. Let J be the K_{4} induced by x_{1}, x_{2}, e and, for $i=1,2$, let T_{i} be the 3 -cycle induced by x_{i}, e. If $D\left[J-x_{1} x_{2}\right]$ has a crossing, then T_{1} and T_{2} cross but e is not crossed. The contradiction is that x_{1} and x_{2} are on the same side of e.

We are now ready for the next major step.

Lemma 5.9. Let D be an h-convex drawing of K_{n} with a specified witnessing set of convex sides. For $i \in\{1,2\}$, let D_{e}^{i} be as in Notation 5.1. Then no edge of D_{e}^{2} crosses any edge of D_{e}^{1}.

Proof. By way of contradiction, suppose some edge $D\left[x_{2} y_{2}\right]$ of D_{e}^{2} crosses some edge $D\left[x_{1} y_{1}\right]$ of D_{e}^{1}. Lemma 5.8 implies not both $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$ can contain an end of e. Without loss of generality, we assume neither x_{1} nor y_{1} is an end of e. Furthermore, $x_{2} y_{2} \neq e$, so we may choose the labelling such that x_{2} is not an end of e. Let J_{1} be the K_{4} induced by x_{1}, y_{1}, e.

Lemma 5.8 implies that $x_{2} y_{2}$ does not cross any edge of J_{1} incident with an end of e, so the only crossing of $x_{2} y_{2}$ with J_{1} is with $x_{1} y_{1}$. Let F be the face of $D\left[J_{1}\right]$ containing F_{e}^{1}. Lemma 5.7 shows that $D\left[x_{2}\right] \in F$, and similarly that $D\left[y_{2}\right] \in F$ if y_{2} is not an end of e. As we traverse $D\left[x_{2} y_{2}\right]$ from $D\left[x_{2}\right]$, we cross $D\left[x_{1} y_{1}\right]$ once, and cross nothing else in $D\left[J_{1}\right]$. Therefore, $D\left[x_{1} y_{1}\right]$ is incident with F, as is $D[e]$. Since the face F of $D\left[J_{1}\right]$ is incident with all four vertices of J_{1}, it follows that J_{1} is a crossing K_{4} in D.

Now, just after we traverse $D\left[x_{2} y_{2}\right]$ across $D\left[x_{1} y_{1}\right]$, we are in a face of $D\left[J_{1}\right]$ incident with the crossing of $D\left[J_{1}\right]$ and with both $D\left[x_{1}\right]$ and $D\left[y_{1}\right]$. This face is not incident with either end of e, nor is it equal to F. But, y_{2} is either an end of e or $D\left[y_{2}\right]$ lies in F, so $D\left[x_{2} y_{2}\right]$ must cross $D\left[J_{1}\right]$ a second time, which is a contradiction.

We conclude our study of h-convex drawings with the proof of Lemma 5.2.
Proof of Lemma 5.2. As in the paragraph immediately following the proof of Lemma 5.5 , for $i=1,2$, let C_{e}^{i} be the cycle in D_{e}^{i} that is the boundary of F_{e}^{i}. Furthermore, let Δ_{e}^{i} be the closed disc bounded by C_{e}^{i} that contains $D\left[\Sigma_{e}^{i}\right]$.

The result is an application of the following simple fact about curves in the sphere.

Observation 5.10. Let Δ_{1} and Δ_{2} be closed discs in the sphere bounded by simple closed curves γ_{1} and γ_{2}, respectively. If:

- $\gamma_{1} \cap \gamma_{2}$ is an arc (or empty); and
- $\gamma_{1} \nsubseteq \Delta_{2}$ and $\gamma_{2} \nsubseteq \Delta_{1}$,
then $\Delta_{1} \cap \Delta_{2}=\gamma_{1} \cap \gamma_{2}$.

Lemmas 5.7 and 5.9 imply that, for $\{i, j\}=\{1,2\}$, the open $\operatorname{arc} D\left[C_{e}^{i}\right] \backslash$ $D[e]$ is disjoint from Δ_{e}^{j}. The result is an immediate application of the preceding paragraph.

6 Proof of Theorem 1.1

In this section, we prove $(1.1 .3) \Rightarrow(1.1 .1)$: an h-convex drawing of K_{n} has simple closed curve extensions of the edges satisfying (PS1), (PS2), and (PS3). This completes the proof of Theorem 1.1.

The proof iteratively constructs the set of simple closed curve extensions of the edges. We assume that, for some $J \subset E\left(K_{n}\right)$ and for all $e \in J$, there exist extensions γ_{e} satisfying (PS1), (PS2), (PS3), and a fourth property (PS4):
(PS4) For each $e \in J$ and each $e^{\prime} \in E\left(K_{n}\right) \backslash\{e\}, \gamma_{e}$ intersects the closed edge $D\left[e^{\prime}\right]$ at most once, and, if it exists, the point of intersection is either a crossing or a vertex incident with both e and e^{\prime}.

Notice that if $J=E\left(K_{n}\right)$, then the extensions of the edges in J automatically satisfy (PS4) provided they satisfy (PS1), (PS2), (PS3). The extra assumption (PS4) is required for inductive purposes.

We pick any $e_{0} \in E\left(K_{n}\right) \backslash J$; the extension of $\gamma_{e_{0}}$ is obtained as a result of Theorem 3.2. Thus, we need to find the two initial curves $\gamma_{e_{0}}^{1}$ and $\gamma_{e_{0}}^{2}$ satisfying the hypotheses of Theorem 3.2 with respect to $\left\{\gamma_{e} \mid e \in J\right\}$. The curve $\gamma_{e_{0}}^{i}$ contains $D\left[e_{0}\right]$ and is completed by an arc joining the ends of e_{0} that is in $F_{e_{0}}$ and "very near" the path $C_{e_{0}}^{i}-e_{0}$; this is where we use the specified convex sides of an h-convex drawing. Both curves are contained in $D\left[e_{0}\right] \cup F_{e_{0}}$. How "near" is "very near" will depend on the curves that are already determined. Our next lemma is the crucial point; Corollary 6.2 provides $\gamma_{e_{0}}^{1}$ and $\gamma_{e_{0}}^{2}$.

Lemma 6.1. Let D be an h-convex drawing of K_{n} with witnessing set \mathcal{C} of convex sides. Let $J \subseteq E\left(K_{n}\right)$ and suppose that, for each $e \in J$, there is a simple closed curve γ_{e} in $D[e] \cup F_{e}$ containing $D[e]$, and such that the extensions $\left\{\gamma_{e} \mid e \in J\right\}$ satisfy (PS1) and (PS4). If $e_{0} \in E\left(K_{n}\right) \backslash J$, then, for any $i \in\{1,2\}$ and any sufficiently small neighbourhood N of $D\left[C_{e_{0}}^{i}\right]$ in $F_{e_{0}} \cup D\left[C_{e_{0}}^{i}\right]$, there are at most two arcs in $\left(\gamma_{e} \cap N\right) \backslash D\left[C_{e_{0}}^{i}\right]$. Furthermore, at most one of these segments is contained in $D[e]$.

Proof. We begin with the central claim. For the sake of definiteness, we assume $i=1$.

Claim 1. If u is a vertex incident with e and is in $C_{e_{0}}^{1}$, then there is no arc of γ_{e} contained in the interior of $\Delta_{e_{0}}^{1}$ that joins two points in $D\left[C_{e_{0}}^{1}\right]$ neither of which is $D[u]$.

Proof. Suppose to the contrary that there is such an arc α. It follows from $\alpha \subseteq \gamma_{e}$ and (PS4) that there is no closed edge of $D\left[C_{e_{0}}^{1}\right]$ containing both ends y, z of α. Thus, each component of $D\left[C_{e_{0}}^{1}\right] \backslash\{y, z\}$ has a vertex of $C_{e_{0}}^{1}$. Let $D[w]$ be a vertex in the component of $D\left[C_{e_{0}}^{1}\right] \backslash\{y, z\}$ not containing $D[u]$.

Both u and w are in $C_{e_{0}}^{1}$, so both are drawn in $\Delta_{e_{0}}^{1}$. Therefore, $D[u w] \subseteq$ $\Delta_{e_{0}}^{1}$, so $D[u w]$ crosses α. Since $\alpha \subseteq \gamma_{e}, D[e]$ cannot cross α, so $u w \neq e$. But the edge $D[u w]$ has the two points $D[u]$ and the crossing with α in γ_{e}, contradicting (PS4) and completing the proof.

Suppose that $\gamma_{e} \cap D\left[C_{e_{0}}^{1}\right]$ contains a vertex $D[u]$, which must be incident with e since γ_{e} satisfies (PS1). If both ends of e are in $C_{e_{0}}^{1}$, then $D[e] \subseteq D_{e_{0}}^{1}$ since $D_{e_{0}}^{1}$ is the subdrawing of D induced by $\Sigma_{e_{0}}^{1}$. Furthermore, the claim implies that the ends of e are the only intersections of γ_{e} with $C_{e_{0}}$. Therefore $D[e]$ is the only segment of γ_{e} contained in $\Delta_{e_{0}}^{1}$.

We may therefore assume that u is the only end of e in $C_{e_{0}}^{1}$. Then there are only two directions from $D[u]$ in γ_{e}; each of these directions can give an arc in $\gamma_{e} \cap \Delta_{e_{0}}^{1}$ having $D[u]$ as an end. By Claim 1, these are the only possible intersections of γ_{e} with $\Delta_{e_{0}}^{1}$. In this case, $\gamma_{e} \cap \Delta_{e_{0}}^{1}$ is either one arc, with $D[u]$ as either an end or an interior point, or $\gamma_{e} \cap \Delta_{e_{0}}^{1}$ is just $D[u]$.

It follows that if an end of e is in $C_{e_{0}}^{1}$, then the two cases above show that $\gamma_{e} \cap \Delta_{e_{0}}^{1}$ is either a non-trivial arc or $D[u]$. In the former case, only the ends of this arc can be the start of a segment of γ_{e} from a point of $D\left[C_{e_{0}}^{1}\right]$ into $F_{e_{0}}$, as required. In the latter case, $\gamma_{e} \cap \Delta_{e_{0}}^{1}=D[u]$, and there are exactly two arcs of γ_{e} having an end in $D[u]$ and extending into $F_{e_{0}}$.

Thus, we may assume that no point of $\gamma_{e} \cap D\left[C_{e_{0}}^{1}\right]$ is a vertex. In this case, (PS4) implies that every intersection of γ_{e} with $D\left[C_{e_{0}}^{1}\right]$ is a crossing. To prove that there are at most two segments of γ_{e} from a point of $D\left[C_{e_{0}}^{1}\right]$ into $F_{e_{0}}$, it suffices to prove that γ_{e} has at most two crossings with $D\left[C_{e_{0}}^{1}\right]$.

Suppose by way of contradiction that there are three crossings of γ_{e} with $D\left[C_{e_{0}}^{1}\right]$. Traverse $D\left[C_{e_{0}}^{1}\right]$ in one direction from such a crossing z. The first vertex $D[v]$ reached is incident with an edge f of $C_{e_{0}}^{1}$ such that both $D[v]$
and z are in the closed edge $D[f]$. Since $z \in \gamma_{e}$, none of the rest of $D[f]$ (including $D[v]$) is in γ_{e}. In particular, $D[v]$ is in $\Sigma_{e}^{1} \cup \Sigma_{e}^{2}$.

Suppose $D[w]$ is the first vertex reached from z traversing $D\left[C_{e_{0}}^{1}\right]$ in the other direction, that is, if w is the other vertex incident with f. Because $\gamma_{e} \subseteq D[e] \cup F_{e}, D[v]$ and $D[w]$ are on different sides of γ_{e}. Therefore, they are in different ones of Σ_{e}^{1} and Σ_{e}^{2}. Thus, every crossing of γ_{e} with $D\left[C_{e_{0}}^{1}\right]$ produces a change between 1 and 2 in the " $1,2,3$ "-labelling of Lemma 5.4. Let z_{1}, z_{2}, z_{3} be three crossings of γ_{e} with $D\left[C_{e_{0}}^{1}\right]$, in this cyclic order. Then the vertices of $C_{e_{0}}^{1}$ nearest each z_{k} have labels 1 and 2 . Starting at z_{1}, we find 1 and 2 near it. Up to relabelling, we may assume the 1 occurs between z_{1} and z_{3} and the 2 between z_{1} and z_{2}. Then choose the 1 near z_{2} and the 2 near z_{3} to obtain a $1,2,1,2$ pattern, contradicting Lemma 5.4.

The following corollary is a straightforward consequence of Lemma 6.1.
Corollary 6.2. Let D be an h-convex drawing of K_{n} with witnessing set \mathcal{C} of convex sides. Let $J \subseteq E\left(K_{n}\right)$ and suppose that, for each $e \in J$, there is a simple closed curve γ_{e} in $D[e] \cup F_{e}$ containing $D[e]$, and such that the extensions $\left\{\gamma_{e} \mid e \in J\right\}$ satisfy (PS1) and (PS4). For any $i \in\{1,2\}$ and any sufficiently small neighbourhood N of $D\left[C_{e_{0}}^{i}\right]$ in $F_{e_{0}} \cup D\left[C_{e_{0}}^{i}\right]$, there is a choice of $\gamma_{e_{0}}^{i}$ in N such that the curves in $J \cup\left\{\delta_{e_{0}}^{i}\right\}$ satisfy (PS1), (PS2w), (PS3), and (PS4).

We are now ready for the proof of Theorem 1.1.
Proof of Theorem 1.1 (1.1.3) implies (1.1.1). Suppose $J \subseteq E\left(K_{n}\right)$ and we have, for each $e \in J$, a simple closed curve γ_{e}, such that the set $\left\{\gamma_{e} \mid\right.$ $e \in J\}$ satisfies (PS1)-(PS4). If $J=E\left(K_{n}\right)$, then we are done; otherwise, let $e_{0} \in E\left(K_{n}\right) \backslash J$.

We show there is a curve $\gamma_{e_{0}}$ containing $D\left[e_{0}\right]$ and otherwise in the face $F_{e_{0}}$ of $D_{e_{0}}^{1} \cup D_{e_{0}}^{2}$ bounded by $\left(C_{e_{0}}^{1}-e_{0}\right) \cup\left(C_{e_{0}}^{2}-e_{0}\right)$ and such that $\left\{\gamma_{e} \mid e \in J \cup\left\{e_{0}\right\}\right\}$ satisfies (PS1)-(PS4).

Let M consist of those $e \in E\left(K_{n}\right) \backslash\left(J \cup\left\{e_{0}\right\}\right)$ such that $D[e] \cap F_{e_{0}} \neq \varnothing$. In any order, repeatedly use Corollary 6.2 to obtain, for all $e \in M, \delta_{e}^{1}$ so that the curves in the set $\Gamma=\left\{\gamma_{e} \mid e \in J\right\} \cup\left\{\delta_{e}^{1} \mid e \in M\right\}$ satisfy (PS1), (PS2w), (PS3), and (PS4).

For each $e \in J \cup M, \gamma_{e} \backslash e$ is in the face F_{e} of $D_{e}^{1} \cup D_{e}^{2}$ bounded by $\left(C_{e}^{1}-e\right) \cup\left(C_{e}^{2}-e\right), \Sigma_{e}^{1}$ is on one side of γ_{e} and Σ_{e}^{2} is on the other side of γ_{e}. Let $\delta_{e_{0}}^{1}$ be as in Corollary 6.2 with respect to e_{0} and J; this is our first
approximation to $\gamma_{e_{0}}$. Applying Corollary 6.2 to $C_{e_{0}}^{2}$, consider an analogous curve δ_{e}^{2}. By Corollary 6.2, both $\Gamma \cup\left\{\delta_{e_{0}}^{1}\right\}$ and $\Gamma \cup\left\{\delta_{e_{0}}^{2}\right\}$ satisfy (PS1), (PS3), (PS4). Moreover, $\delta_{e_{0}}^{1}$ and $\delta_{e_{0}}^{2}$ intersect each curve in Γ at most twice and all intersections are crossings.

For $i=1,2$, let $\Gamma_{i}=\left\{\delta \in \Gamma: \delta \cap \delta_{e_{0}}^{i} \neq \emptyset\right\}$.
Claim 1. Either $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ or D is f-convex.
Proof. Suppose that for some $e \in J \cup M$ the extension $\delta \in \Gamma$ of e is not in $\Gamma_{1} \cup \Gamma_{2}$. From Lemma 5.3 it follows that any edge of M crosses both $\delta_{e_{0}}^{1}$ and $\delta_{e_{0}}^{2}$. Therefore $e \in J$ and $\delta=\gamma_{e}$. Since γ_{e} does not intersect $\delta_{e_{0}}^{1} \cup \delta_{e_{0}}^{2}$, we conclude that γ_{e} is disjoint from $F_{e_{0}}$.

Recall that, for $\ell=1,2, \Delta_{e_{0}}^{\ell}$ is the closed disc in $D_{e_{0}}^{\ell}$ bounded by $C_{e_{0}}^{\ell}$ and disjoint from $F_{e_{0}}$. The preceding paragraph implies that, for some $\ell \in\{1,2\}$, γ_{e} is contained in $\Delta_{e_{0}}^{\ell}$. It follows that: (i) e has both ends in $\Delta_{e_{0}}^{\ell}$; and (ii) every vertex of $C_{e_{0}}^{\ell}$ is in the same one of Δ_{e}^{1} and Δ_{e}^{2} (because, by assumption, γ_{e} separates Δ_{e}^{1} from Δ_{e}^{2}).

If an edge $x y$ crosses e, then x and y are not both in the same one of Σ_{e}^{1} and Σ_{e}^{2}. Therefore, (ii) implies that, if x, y are vertices in $C_{e_{0}}^{\ell}$, then $x y$ does not cross e. In particular, letting z be one end of e_{0} and letting $x y$ run through the edges of $C_{e_{0}}^{\ell}$, the 3 -cycles $x y z$ bound convex sides that cover $\Delta_{e_{0}}^{\ell}$. It follows that e is contained in one of these; let it be $x y z$.

Suppose by way of contradiction that e has an end u that is not one of x, y, z. Then h-convexity implies that the convex sides in \mathcal{C} of the 3 -cycles $u x y, u x z$, and $u y z$ are all contained in the convex side of $x y z$.

Let v be the other end of e. If v is one of x, y, z, then the resulting planar K_{4} shows that e has the two vertices in $\{x, y, z\} \backslash\{v\}$ not both in the same one of Σ_{e}^{1} and Σ_{e}^{2}, a contradiction. Likewise, if v is not one of x, y, z, then the one of the 3 -cycles $u x y, u x z$, and $u y z$ containing v on its convex side has its two vertices from x, y, z not both in the same one of Σ_{e}^{1} and Σ_{e}^{2}, a contradiction. These contradictions show that both ends of e are among x, y, z; that is, both ends of e are in $C_{e_{0}}^{\ell}$.

Next, suppose by way of contradiction, that e is not an edge of $C_{e_{0}}^{\ell}$. Then it is a chord of $C_{e_{0}}^{\ell}$ in $D_{e_{0}}^{\ell}$, and so it crosses an edge $x y$ with x and y in $C_{e_{0}}^{\ell}$ on different sides of e. But then we have x and y are not both in the same one of Σ_{e}^{1} and Σ_{e}^{2}, a contradiction.

Lemma 5.6 shows that $D_{e_{0}}^{\ell}$ (using the convex sides in \mathcal{C}) is f-convex. Since e is in $C_{e_{0}}^{\ell}$, it follows that the vertices of $D_{e_{0}}^{\ell}$ not incident with e are, for some $k \in\{1,2\}$, all in Σ_{e}^{k}. Since $\delta_{j} \subseteq \Delta_{e_{0}}^{\ell}$, all vertices of $\Delta_{e_{0}}^{3-\ell}$ are in the same
Σ_{e}^{k} as the two vertices incident with e_{0}. It follows that all vertices of K_{n} not incident with e are in the same Σ_{e}^{k}, showing that D is f-convex, as claimed.

In the case D is f-convex, $[10$, Thm. 1] shows that D is homeomorphic to a pseudolinear drawing in the plane. By definition, the pseudolines intersect once in the plane, and they can be chosen so that they all cross again at the point at infinity that completes the sphere.

Thus we may assume that $\Gamma_{1} \cup \Gamma_{2}=\Gamma$. In this case we apply Theorem 3.2 to $\Gamma, \sigma=D\left[e_{0}\right], \gamma_{1}=\delta_{e_{0}}^{1}$ and $\gamma_{2}=\delta_{e_{0}}^{2}$ to obtain a curve $\gamma_{e_{0}}$ such that $\left\{\gamma_{e} \mid e \in J \cup\left\{e_{0}\right\}\right\}$ satisfies (PS1), (PS2), (PS3), and (PS4), as desired.

A given h-convex drawing D may have different choices for the convex sides of the 3 -cycles that witness h-convexity. In Section 5, the extensions of D into arrangements of pseudocircles rely on a choice of convex sides witnessing h-convexity. Moreover, the proof of the implication (1.1.2) \Rightarrow (1.1.3) shows how the choice of convex sides can be recovered from such an arrangement of pseudocircles. Define two such arrangements of pseudocircles to be equivalent if they determine the same convex sides.

The sweeping theorem of Snoeyink and Hershberger [25] shows that either of two equivalent arrangements of pseudocircles can be shifted to the other by a sequence of Reidemeister II and III moves. Simple examples show that Type II moves may be required.

7 Non-extendible drawings of K_{9} and K_{10}

In this section, we present a drawing of each of K_{9} and K_{10}. The drawing D_{9} of K_{9} in Figure 10 has an extension to an arrangement of pseudocircles (that is, (PS2w)) that satisfies (PS1), but no such extension also satisfies (PS2). The drawing D_{10} of K_{10} in Figure 10 does not have an extension to an arrangement of pseudocircles.

The analyses of the drawings D_{9} and D_{10} involve spirals in the drawings D_{1} and D_{2} in Figure 11. For convenience, we extend the notion of spiral to closed spiral. For an arrangement Γ of simple closed curves, a closed spiral is a simple closed curve γ in $P(\Gamma)$ with basepoint s such that, for every sufficiently small open interval I in γ containing $s, \gamma \backslash I$ is a spiral.

To see the point of closed spirals, consider the drawing D_{1}. The unique simple closed curve γ is D_{1} is a closed spiral, whose basepoint is the vertex

Figure 10: The upper drawing D_{9} of K_{9} has a pseudocircular extension, but none satisfying (PS2). The dark and light gray (red and green online) subdrawings in D_{9} are both isomorphic to D_{1} (see Figure 11 below). The lower drawing D_{10} of K_{10} has no pseudocircular extension. In the drawing of K_{10}, the thicker edges are the drawing D_{2} (Figure 11).
in γ. Let Γ be an arrangement of pseudocircles extending D_{1}. Then, for any sufficiently small open interval I in γ containing s, I does not contain any crossing of Γ other than s, and $\gamma \backslash I$ is a spiral in $P(\Gamma)$. By Theorem 2.3, $\gamma \backslash I$ has an external segment, which corresponds to a simple closed curve in $P(\Gamma)$ that is contained in the interior of γ.

It follows that, any extension of D_{9} to an arrangement of pseudocircles must have a pseudocircle in the bounded side of each of the coloured copies of D_{1}, showing it does not satisfy (PS2).

On the other hand, we can extend the straight edges into lines and extend the two curved edges by line segments connecting their vertices. In the

Figure 11: The crucial configurations D_{1} on the left and D_{2} on the right.
sphere, adding the point at infinity to the straight lines gives an extension of the drawing of K_{9} to an arrangement of simple closed curves satisfying (PS1) and (PS2w). Some of the pseudocircles may intersect tangentially at the point at infinity since we did not assume that the lines are in general position, but this can be corrected if we perturb the curves. Thus, without (PS3), (PS1) and (PS2w) do not imply (PS1) and (PS2).

For the drawing D_{10}, we show that there is no arrangement of pseudocircles extending the drawing D_{2} on the right in Figure 11. Since D_{2} is contained in D_{10}, this implies there is no arrangement of pseudocircles extending D_{10}.

Let γ denote the unique simple closed curve in D_{2} containing the ten crossings and none of the vertices. Let s be the upper most crossing in the diagram. Then γ is a closed spiral.

For any sufficently small open interval I in γ containing $s, \gamma \backslash I$ is a spiral in $P(\Gamma)$ that has weight 7 with decomposition $\alpha_{0} \alpha_{1} \ldots \alpha_{7}$. The drawing D_{2} already shows that the segments $\alpha_{1}, \ldots, \alpha_{7}$ are coherent. The segments α_{0} and α_{7} are symmetric.

The extension α_{0}^{+}is contained in pseudocircle γ_{0} containing α_{0}. We note that γ_{0} contains a vertex outside of our original simple closed curve γ. Therefore, the choice of I shows α_{0}^{+}has its end on $\gamma \backslash I$. Consequently, α_{0} is also coherent. Likewise, α_{7} is coherent, showing $P(\Gamma)$ contains a coherent spiral, contradicting Theorem 2.3. That is, D_{2} and, consequently, the drawing of K_{10} do not have extensions to arrangements of pseudocircles.

8 Conclusion

In this section, we mention a few results and questions about drawings of K_{n} related to this work. We start with the questions.

The drawing D_{10} in Figure 10 has no extension to an arrangement of
pseudocircles. It is natural to wonder if there is a fixed k such that every drawing of K_{n} has an extension to an arrangement of simple closed curves that pairwise cross at most k times. In fact, for a drawing of any simple graph, there is such an extension with $k \leq 4$. See Figure 12 for an idea of how such an extension may be achieved.

Figure 12: Extensions near a vertex.

Some interesting questions remain unresolved.
Question 1. Does every convex drawing of K_{n} have an extension to simple closed curves pairwise crossing at most twice? exactly twice? The drawings in Figure 10 are not convex.

Question 2. Arroyo et al [9] characterize drawings of (not necessarily complete) graphs whose edges extend to an arrangement of pseudolines by giving the complete (infinite) list of obstructions. Given the close connection we developed here between pseudospherical and pseudolinear drawings for complete graphs, it is reasonable to wonder if there is an analogous theorem for "arrangements of pseudocircles".
We conjecture that there is a list-of-obstructions characterization of when an arbitrary graph has an extension satisfying (PS1), (PS2) and (PS3). It is not clear to us at this juncture how to proceed with this.

The study of spirals and Theorem 2.3 played an essential role in the proof of Theorem 1.1 and also led to the drawings D_{1} and D_{2} used in the drawings of K_{9} and K_{10}.

Recall that a string is a homeomorph of a compact real interval.

Question 3. Can we characterize those sets of strings that are extendible to an arrangement of pseudocircles?

So far, the authors have not found an example of a set of strings notextendible to a set of pseudocircles that cannot be explained in terms of spirals and Theorem 2.3. A further study of spirals may be the key to solve this question.

We conclude with two simple results about pseudospherical drawings of K_{n}. For the first, Lemma 5.2 implies that every edge of a pseudospherical drawing of K_{n} induces a split of K_{n} into two pseudolinear drawings of smaller complete graphs (one having k, say, vertices and the other $n+2-k$ vertices). Every pseudolinear drawing of K_{n} has at least $n^{2}+\mathrm{O}(n \log (n))$ empty triangles (that is, 3 -cycles having a side that does not contain a vertex) [10]. Thus, we can estimate the number of empty triangles on one side or other of the split. Adding in empty triangles involving vertices on different sides of the split yields at least $\frac{3}{4} n^{2}+\mathrm{O}(n \log (n))$ empty triangles in a pseudospherical drawing of K_{n}.

Rafla [24] conjectured that every (good) drawing of K_{n} has a Hamilton cycle with no self-crossing. Ábrego et al. have enumerated all the drawings of K_{n} with $n \leq 9[2]$ and in this way verified the conjecture for all these drawings of K_{n}. We extend to pseudospherical drawings the folklore proof that a pseudolinear drawing of K_{n} has such a Hamilton cycle.

For each edge e of the pseudospherical drawing D of K_{n}, let $c(e)$ denote the number of pseudocircles that $D[e]$ crosses. Choose a Hamilton cycle H in K_{n} that minimizes $\sum_{e \in E(H)} c(e)$. If $e_{1}, f_{1} \in E(H)$ cross in D, then let J be the K_{4} induced by e_{1} and f_{1}. Then $D[J]$ has exactly one crossing, namely e_{1} with f_{1}. The remaining four edges in J come in two disjoint, non-crossing pairs. For one such pair $\left\{e_{2}, f_{2}\right\},\left(H-\left\{e_{1}, f_{1}\right\}\right)+\left\{e_{2}, f_{2}\right\}$ is also a Hamilton cycle H^{\prime}.

We claim that $\sum_{e \in E\left(H^{\prime}\right)} c(e)<\sum_{e \in E(H)} c(e)$, contradicting the choice of H.

1. Clearly, the two contributions of e_{1} crossing $\gamma_{f_{1}}$ and f_{1} crossing $\gamma_{e_{1}}$ are counted for the H-sum, but not for the H^{\prime}-sum.
Now suppose $e \in E\left(H^{\prime}\right)$ crosses the pseudocircle γ_{f} containing $f \in$ $E\left(H^{\prime}\right)$.
2. If e is not $\left\{e_{2}, f_{2}\right\}$, then the $e \gamma_{f}$-crossing is counted for both H and H^{\prime}.
3. If $e=e_{2}$, say, then γ_{f} crosses e_{2} and must continue through another side of the 4 -cycle $D\left[J-\left\{e_{1}, f_{1}\right\}\right]$. In order to get there, it must cross at least one of e_{1} and f_{1}. If γ_{f} crosses both e_{2}, f_{2}, then it also crosses both e_{1}, f_{1}. Therefore, γ_{f} has at least as many crossing with e_{1}, f_{1} that it has with e_{2}, f_{2}, as required.

References

[1] B.M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, Graphs Combin. 21 (2005), 293-300.
[2] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, T. Hackl, J. Pammer, A. Pilz, P. Ramos, G. Salazar, and B. Vogtenhuber. All good drawings of small complete graphs. In Proc. $31^{s t}$ European Workshop on Computational Geometry EuroCG '15, pages 57-60, Ljubljana, Slovenia, 2015.
[3] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, D. McQuillan, B. Mohar, P. Mutzel, P. Ramos, R.B. Richter, B. Vogtenhuber, Bishellable drawings of K_{n}. SIAM J. Discrete Math. 32 (2018), no. 4, 2482-2492.
[4] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, G. Salazar, Shellable drawings and the cylindrical crossing number of K_{n}, Discrete and Computational Geometry, 52 (2014), no. 4, 743-753.
[5] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and B. Vogtenhuber, Non-shellable drawings of K_{n} with few crossings, in: Proc. 26th Annual Canadian Conference on Computational Geometry CCCG 2014.
[6] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_{n}, Disc. Comput. Geom. 49 (2013), no. 4, 747-777.
[7] O. Aichholzer, J. García, D. Orden, and P. Ramos, New lower bounds for the number of ($\leq k$)-edges and the rectilinear crossing number of K_{n}, Discrete Comput. Geom. 38 (2007), no. 1, 1-14.
[8] O. Aichholzer, T. Hackl, A. Pilz, G. Salazar, and B. Vogtenhuber, Deciding monotonicity of good drawings of the complete graph, In: Proc. XVI Spanish Meeting on Computational Geometry (EGC 2015), 33-36, 2015.
[9] A. Arroyo, J. Bensmail, and R.B. Richter, Extending drawings of graphs to arrangements of pseudolines, submitted.
[10] A. Arroyo, D. McQuillan, R.B. Richter, and G. Salazar, Levi's Lemma, pseudolinear drawings of K_{n}, and empty triangles, J. Graph Theory 87 (2018), no. 4, 443-459.
[11] A. Arroyo, D. McQuillan, R.B. Richter, and G. Salazar, Drawings of K_{n} with the same rotation scheme are the same up to triangle-flips (Gioan's theorem), Australas. J. Combin. 67 (2017), 131-144.
[12] A. Arroyo, D. McQuillan, R.B. Richter, and G. Salazar, Convex drawings of K_{n} : topology meets geometry, submitted.
[13] A. Björner, M. Las Vergnas, B. Sturmfelds, N. White, G. Ziegler, Oriented Matroids, Encyclopedia of Mathematics and its Applications Book 46, Cambridge University Press, 2009.
[14] J. Blažek and M. Koman, A minimal problem concerning complete plane graphs, in M. Fiedler (ed), Theory of Graphs and Its Applications, Czech. Acad. of Sci. (1964), 113-117.
[15] S. Felsner and M. Scheucher. Arrangements of pseudocircles: on circularizability, Extended abstract in: Proceedings GD 18 LNCS 11282 (2018) 555-568. To appear Disc. Comp. Geom., DOI: 10.1007/s00454-019-00077-y.
[16] S. Felsner and M. Scheucher, Homepage of Pseudocircles, https://www3.math.tu-berlin.de/diskremath/pseudocircles/
[17] E. Gioan, Complete graph drawings up to triangle mutations, submitted. (A preliminary version appears as: Complete graph drawings up to triangle mutations, Proceedings WG 2005 (Metz), LNCS 3787, pp139150 (2005) (International Workshop on Graph-Theoretic Concepts in Computer Science).)
[18] F. Harary and A. Hill, On the number of crossings in a complete graph, Proc. Edinburgh Math. Soc. 2 (1962/1963), no. 13, 333-338.
[19] H. Harborth, Empty triangles in drawings of the complete graph, Discrete Math. 191 (1998), no. 1-3, 109-111.
[20] J. Kynčl, https://mathoverflow.net/questions/128878/drawings-of-complete-graphs-with-zn-crossings
[21] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex quadrilaterals and k-sets, in Towards a theory of geometric graphs, 139-148, Contemp. Math. 342, Amer. Math. Soc., Providence, RI, 2004.
[22] C. Medina, J. Ramírez-Alfonsín, and G. Salazar. The unavoidable arrangements of pseudocircles, Proc. Amer. Math. Soc. 147 (2019), no. 7, 3165-3175.
[23] J.W. Moon, On the distribution of crossings in random complete graphs, SIAM J. Appl. Math. 13 (1965), 506-510. Erratum, same journal 32 (1977), no. 3, 706.
[24] N. H. Rafla, The good drawings D_{n} of the complete graph K_{n}, Ph.D. thesis, McGill University, Montreal, 1988.
[25] J. Snoeyink and J. Hershberger, Sweeping arrangements of curves, Disc. Comp. Geom. (New Brunswick, NJ, 1989/1990), 309-349, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 6 Amer. Math. Soc. Providence, RI, 1991.

[^0]: *Supported by CONACyT. This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No. 754411, IST, Klosterneuburg, Austria.
 ${ }^{\dagger}$ Supported by NSERC Grant 50503-10940-500, Dept. of Combinatorics \& Optimization, University of Waterloo, Waterloo, Canada N2L 3G1.
 \ddagger Supported by NSERC, Dept. of Mathematics, University of Toronto, Toronto, Canada M5S 1A1.

