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Abstract

The aim of this project paper is to analyze models that abstract from great circle
graphs. After a brief overview of random d-regular graphs and great circle graphs, we
abstract these graphs to two models, G∗n and GAn . We will show that the short cycles
distribution in G∗n is asymptotically Poisson; We will present a conjecture on contiguity to
Gn,4 and then show that asymptotically almost surely all graphs in G∗n are 4-connected.
We will end by presenting some open problems.
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Chapter 1

Introduction

1.1 Overview

Random regular graphs are a field of research that has been studied extensively, and many
beautiful models exist.

In this project paper, we will start by presenting the history of random graphs and
explain the pairing model that is used to describe the uniform d-regular graph model
(Chapter 1). We will then present great circle graphs, and then, in Chapter 2, abstract
them to two random models, G∗n and GAn . Next, in Chapter 3, for G∗n, we will show that the
short cycles distribution is asymptotically Poisson; We will then present a conjecture on
contiguity to Gn,4 in Chapter 4, and finally, in chapter 5, we will show that asymptotically
almost surely all graphs in G∗n are 4-connected. We will end by presenting some open
problems.

1.2 Preliminaries and notation

To start out, we need some definitions and notations, from graph theory as well as from
probability theory.

The basic concepts are assumed to be known to the reader. For a given graph G =
(V,E), we will let V (G) denote the vertices of G, and E(G) denote the edges of G. When
we talk of a graph G, we will assume it is simple. Similarly, we will write |G| for the
number of vertices of G, and ||G|| for the number of edges.

For n ∈ N, we let [n] denote the set {1, 2, . . . , n}. Let P(A) denote the probability of
event A occurring.
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We will also be using the “big-O” notation, see e.g. [16]: For two functions, f(n) and
g(n),

• f(n) = O(g(n)) if there exist constants C and n0 such that f(n) ≤ Cg(n) for all
n ≥ n0,

• f(n) = Ω(g(n)) if g(n) = O(f(n)),

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)),

• f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞ and finally

• f(n) = o(g(n)) as n→∞ if f(n)/g(n)→ 0 as n→∞.

As for notations from probability theory, let Po(λ) denote the Poisson distribution with
parameter λ. A probabilistic event An is said to hold asymptotically almost surely (a.a.s.)
if P(An) → 1 for n → ∞. For any given random variable Z, we say that a sequence
X1, X2, . . . converges towards Z in distribution as n → ∞ if P(Xn ≤ x) → P(Z ≤ x) for

every real x such that the distribution of Z is continuous at x [16]. We write X
d→ Z. At

some point, we will also need Chebyshev’s inequality:

Theorem 1.1 (Chebyshev’s inequality). For a random variable X with expected value µ
and variance σ2 <∞, for any k > 0, it holds that

P(|X − µ| ≥ kσ) ≤ 1

k2
. (1.1)

1.3 Brief history of random graphs

While Erdős used random graphs already in [7] to prove the existence of graphs with a
specific Ramsey property, one might say that the active study of random graphs goes back
to Erdős and Rényi’s groundbreaking papers from 1959 and 1960 [8, 9]. The two models
they introduced, Gn,p and Gn,M , have been extremely well analyzed; for an extensive
overview of what has been done, see, for example, [2, 16]. Here, I will briefly explain how
these models work, and what properties of these models are known.

Let N :=
(
n
2

)
. The model Gn,p is parametrized by a number 0 ≤ p ≤ 1. The probability

space (Ω(n),F ,P) consists of the set of all graphs on n vertices, Ω(n), where each of the
graphs G ∈ Ω(n) is realized with probability P(G) = pe(G)(1 − p)N−e(G). This means that
for each edge e ∈ E(G), a coin is tossed: with probability p, e is included in the graph G,
while with probability 1− p, e is not chosen.
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For the other approach to classical random graphs, Gn,M , the probability space Gn,M

consists of (Ω
(n)
M ,FM ,PM), where Ω

(n)
M is the space of all graphs on n vertices that have

exactly M edges. A graph G is chosen from Ω
(n)
M uniformly at random, so P(G) = 1∣∣∣Ω(n)

M

∣∣∣ ,
where

∣∣∣Ω(n)
M

∣∣∣ =
(
N
M

)
.

A nice way to view a graph in Gn,M is as the result of the mth step of a graph process:
Starting with a graph on n vertices and no edges, at each time step t an edge that is not
yet in the graph is chosen at random and added to the graph.

It can be shown (see, i.e. [16, p. 14]) that these two models are asymptotically equiv-
alent. This means that, if M ∼

(
n
2

)
p, a majority of properties of graphs in Gn,p are very

similar to properties that hold for graphs in Gn,M .

Many properties about Gn,p are known, such as:

• For any integer l, let Xc,l(G) denote the number of l-cycles in a given graph G. If

np→ c > 0, then for the cycle count Xcl , of G ∈ Gn,p, we have Xcl(G)
d→Po(λ), the

Poisson distribution with expectation λ = cl

l
[16].

• For p large enough, we can speak of the diameter of a random graph in a non-
trivial way [2]: If c is a positive constant, d = d(n) ≥ 2 a natural number, and for
p = p(n, c, d), 0 < p < 1,

pdnd−1 = log(n2/c),

such that pn/(log n)3 →∞, then in Gn,p we have

lim
n→∞

P(diam G = d) = e
−c/2 and lim

n→∞
P(diam G = d+ 1) = 1− e−c/2.

• Many other questions such as the emergence of a giant component [15] and the
chromatic number [20], have also been studied intensely.

The study of random graphs has generated many beautiful results. In fact, the first
use of the probabilistic method is believed to be by Erdős in conjecture with a random
graph [7]. However, as significant as “classical” random graphs are, for many cases they
are just too general. For example, if we want a graph to model the links on the Internet,
it may seem that these links occur in a random manner, but clearly not uniformly at
random. Popular sites such as Google or Facebook tend to become ever more popular, the
more hyper references there already are linking to them. Other models had to be found to
analyze this type of behaviour [4, 5].

It is also easy to find examples where one wishes to model a random graph where each
vertex has the same degree, d, i.e. a d-regular graph. Consider for example a peer-to-peer
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network such that each user is represented by a vertex of the graph, vertices leave and
enter the system at random, and at each point t in time, the graph should be connected
and every vertex should connect to exactly d other vertices. Properties of models for a type
of system like this have been analyzed [11, 12], though of course, mathematicians started
with the most general case of random d-regular graphs first.

1.4 Uniform random regular graphs and the pairing

model

Let Gn,d be the space of d-regular random graphs on n vertices, such that each graph
appears with equal probability. This is also called the uniform model. Clearly, dn must be
even.

What seems to have started in [1] as the configuration model and is described in [25]
as the pairing model is often used for analyzing Gn,d.

1.4.1 The pairing model

Consider a set of dn balls and n bins, such that each bin contains d balls. Uniformly at
random, pick a random matching between these dn balls. This creates dn/2 pairs of balls,
and is called a pairing. Form a graph as follows: All balls in a given bin are identified
as one vertex representing the bin. For every matched pair of balls, an edge is placed
between the corresponding bins. Note that this gives a random, d-regular multigraph, as it
is possible that two balls in the same bin are matched (a loop), and also that several balls
in some bin i are matched with some other balls in bin j, so multi-edges are also allowed.
This model is denoted by Pn,d.

Since graphs in Gn,d have no loops or multiple edges, each G in Gn,d corresponds to
(d!)n pairings. Randomly choosing a graph from Pn,d under the condition that the graph is
simple gives a uniform distribution over all d-regular graphs. It is thus possible to analyze
Gn,d by analyzing Pn,d and conditioning on the fact that the multigraph chosen from Pn,d
is simple.

However, note that randomly choosing a multigraph from the non-simple outcomes of
the pairing model is not uniform: For each loop or multiple edge, the number of corre-
sponding pairings decreases.

Lemma 1.1 ([25]). Let A be an event in Gn,d and let A′ be the set of pairings that corre-

4



spond to A. Then

PGn,d
(A) =

PPn,d
(A′)

P(G simple)
.

Proof.

PGn,d
(A) = PPn,d

(A′ | G simple )

=
PPn,d

(A′)

P(G simple)
.

Here, the first equality follows because each graph G ∈ Gn,d corresponds to the same
number of pairings, and as both models are uniform, going from the probability space Gn,d

to Pn,d does not change probabilities as long as we are only considering simple pairings.
Finally, the last equality follows by the definition of conditional probabilities.

With help of the pairing model, it is possible to give an approximation for |Gn,d|. Let
r be an even number. How many ways are there of matching r numbers? Consider the
following algorithm (Algorithm 1) that runs on the set A := [r].

Algorithm 1 An algorithm that produces a random matching on [r]

Procedure RandomPairing (r: even integer)
A := [r];
for i = 1 to r do

if i ∈ A then
A← A \ i
Choose an element j in A uniformly at random;
Pair i with j;
A← A \ j

end if
end for
return (r/2 pairs)

For i = 1, . . . , r, if i ∈ A, it generates uniformly at random a number j 6= i, j ∈ A,
and matches i with j. Then, i and j are removed from A. Each different outcome of this
algorithm is equally likely. At the first step, there are r− 1 choices to choose what to pair
with 1, at the next step, there are r − 3 choices as to what to pair with the next smallest
element left in A, and so on. Finally, we have

(r − 1)(r − 3) · · · · · 2 = (r − 1)!! =
r!

(r/2)!2r/2

5



different matchings of [r].

In particular, consider r = dn in the pairing model. Each of the d balls in each bin is
equivalent, so there are

|Pn,d| =
(dn)!

(dn/2)!2dn/2(d!)n
(1.2)

outcomes of the pairing model. With this, it follows that

|Gn,d| =
(dn)!

(dn/2)!2dn/2(d!)n
P(simple).

The only thing necessary now is to estimate PPn,d
(simple). In [18], McKay and Wormald

showed as a corollary that, for d = o(
√
n), asymptotically

P(simple) = exp

(
1− d2

4
− d3

12n
+O

(
d2

n

))
.

For example, for d = 4, as n gets large, there are asymptotically

(4n)!

(2n)!22n24n
exp

(
−15

4
− 64

12n
+O

(
1

n

))
(1.3)

graphs in Gn,4.

Corollary 1.1. If an event A holds a.a.s. in Pn,d, it also holds a.a.s. in Gn,d.

Proof.

PPn,d
(A) = PPn,d

(A ∩G simple) + PPn,d
(A ∩G not simple)

= PPn,d
(A | G simple)PPn,d

(G simple) + PPn,d
(A | G not simple)PPn,d

(G not simple)

= PGn,d
(A)PPn,d

(G simple) + PPn,d
(A | G not simple)PPn,d

(G not simple)

= PGn,d
(A)PPn,d

(G simple) + PPn,d
(G not simple)

The last equality follows from PPn,d
(A)→ 1, and as PPn,d

(G simple) is bounded away from
0. With the same reasoning, as PPn,d

(A) = 1 a.a.s., we have PGn,d
(A) = 1 a.a.s.
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1.4.2 Results on graphs in Gn,d

The field of random regular graphs has been intensely studied. For a very thorough
overview, see [25].

Many of these results were in fact obtained using the pairing model, such as

Theorem 1.2. [1, 23] The distribution of the number of i-cycles in G ∈ Gn,d is asymptot-

ically Poisson, with mean λi = (d−1)i

2i
, for all fixed i.

See also Section 3.3.

Theorem 1.3. [24] For d ≥ 3, Gn,d is d-connected a.a.s.

Theorem 1.4. [3] The diameter of a graph G ∈ Gn,d is O(log(n)) a.a.s.

For this project paper, another important result will be the following:

Theorem 1.5. [21] A graph G ∈ Gn,4 has chromatic number 3 a.a.s.

1.5 Great circle graphs

Consider the following geometrical construction: We are given a 3-dimensional sphere,
without loss of generality the sphere of radius 1 centred at the origin. We are also given
n planes that pass through the origin. Consider the intersection of the planes with the
sphere: Each intersection forms a great circle on the sphere. (See Figure 1.1) For any two
distinct great circles i and j, it holds that they meet in precisely two points. We construct
a graph as follows:

• Each intersection point of two or more circles becomes a vertex embedded in the
plane.

• Two vertices vi and vj are adjacent if the arc between the points vi and vj is not
intersected by any other arc.

This construction is then a great circle graph. If for every point it holds that at most two
great circles intersect in it, we call the corresponding graph simple. In this case, it is a
4-regular graph. Except when otherwise stated, we will always assume a great circle graph
to be simple.

In fact, this construction can be generalized a bit [10]. Consider the sphere S and a
family {c1, . . . , cn} of simple closed curves on it such that

7



Figure 1.1: A great circle graph – the intersection of the great circles form the vertices,
while the arcs between the vertices form edges.

• every two curves have exactly two points in common at which they cross and

• for every three different indices i, j, k ∈ [n], curve ck separates the two intersections
of ci and cj.

We call the set of graphs Ga
n that this construction gives arrangement graphs. Note that

simple great circle graphs form a subset of arrangement graphs.

For any arrangement graph G, several properties hold. The first three follow easily.

• First and foremost, G is planar. This means that, by the four-colour theorem [19],
G is four colourable.

• G is 4-regular.

• G has n(n− 1) vertices and 2n(n− 1) edges.

• For n ≥ 3, G is 4-connected.

In [10], the last item is proved using Menger’s theorem. (See, for example, [6]).

Wiring diagrams corresponding to graphs in GAn are a set of n lines in the plane each
corresponding to a curve on S. Their y coordinate is fixed except when two curves, say
ci and cj, cross. At this point, the lines corresponding to ci and cj “swap” y-coordinates.
This construction was introduced in [13], and was used in [10] to prove following theorem:
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Theorem 1.6 ([10]). Every pseudo-cycle arrangement can be decomposed into two edge-
disjoint Hamilton cycles, and the decomposition can be found efficiently [10].

Note that the following theorem, also [10], follows as a direct corollary:

Theorem 1.7 ([10]). Circle arrangement graphs are four edge colourable.

This follows from the fact that, after decomposing a graph on an even number of vertices
into two Hamilton cycles, one of the cycles can be coloured in colours 1 and 2, while the
other cycle can be coloured in colours 3 and 4.

Conjecture 1.1 ([10]). Circle arrangement graphs are 3-vertex colourable.

This has been proved for arrangements of up to 11 circles by Aichholzer1. For cases
where there are more than 11 circles, this seems to be stated as an open problem2,3, though
Cahit claims4 to have proved it by counting chains of triangles.

All these constructions of graphs lead to the idea of the models analyzed in this paper.

1Personal communication
2http://www.tex.ac.uk/cgi-bin/texfaq2html?label=citeURL, 2 Nov 2010
3http://garden.irmacs.sfu.ca/?q=category/arrangement graph, 2 Nov 2010
4http://arxiv.org/abs/math/0408363
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Chapter 2

The models

From the different models presented in the previous chapter — Gn,d and arrangement
graphs — we came up with two random generalizations of arrangement graphs. We are
aiming for a random graph model of an abstraction of great circle graphs that does not
include the planarity of the graphs— not including planarity makes the model much easier
to analyse.

Instead of circles, we will be considering cycles. If two cycles ci and cj in a graph share
a vertex v , we call v an intersection of ci and cj. We say a vertex v 6= w1, w2 separates
vertices w1 and w2 in a path P going from w1 to w2 if v ∈ P .

In this sense, arrangement graphs translate to graphs with n cycles on 2n− 2 vertices
such that for each three cycles ci, cj, ck we have that in both ci and cj the intersections of
ci and cj are separated by a vertex in ck.

We can abstract from this even further by taking n cycles on 2n − 2 vertices such
that each pair of cycles ci and cj must intersect in exactly two vertices. We will start by
describing this abstraction first.

2.1 Random cycle arrangement graphs

The idea for this model stems from an abstraction of the great circle graph presented in
Section 1.5. Formally, consider a graph whose edges are partitioned into n cycles each of
length 2n− 2, such that each two cycles intersect in precisely two vertices and each vertex
has degree 4. We will call these n cycles initial cycles. This setup is similar to that of
the great cycle graphs, except that we have taken away the planarity. Also, the outcome
might not be a simple graph as this model permits double edges.

10



Create such a graph by starting with n disjoint cycles and identifying two vertices
for each pair of cycles, in a random manner such that each valid way of doing the n
identifications is equally likely. We will call a graph generated like this a random cycle
arrangement graph.

2.1.1 An easy example in pictures

Here is an example, in pictures, of how this would work for the case n = 3. Following this
very easy example will help understand the notation and calculations later.

We start with considering three directed cycles, each of length four. To distinguish
between them, let one of them be red, one blue and one green.

3

1

24

3

1

24

3

1

24

As the next step, match two vertices of the red cycle with two vertices of the blue cycle.
The other two vertices of the red cycle are matched with two vertices of the green cycle
in the same manner, while two vertices of the blue cycle are matched with two vertices
of the green cycle. This is done in a random manner that makes each such identification
equally likely. (How this random manner works will be described in Section 2.1.2). The
result might look something like this:
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3

1

24

3

1

24

3

1

24

Next, all vertices that have been matched are identified with each other, while the
initial edges remain in the graph. Thus, we go from n(2n−2) = 12 vertices to n(n−1) = 6
vertices. At this point, a labelling of the vertices will also occur by some random algorithm.

4

2

1

1

3

4

3

2

2

3

4

1

1

42

3

6 5

Finally, to obtain the graph we want, we take away the colours, the two initial labels each
vertex has, and the orientation of the edges. We end up with a graph that looks like this:
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1

42

3

6 5

Note that different labellings of the initial matchings of vertices correspond to the same
graph, and also that the outcome of these vertex identifications has double edges.

We will permit these double edges in the examination of this model. In further research,
conditioning on having no double edges would be an interesting step to take.

Let us denote this model by G∗n. If a given graph can be decomposed as in this model
and is thus in G∗n, we call such a decomposition a lock decomposition.

What properties does this random 4-regular graph have? In particular, the question
one may ask oneself is if almost all 4-regular graphs have such a lock decomposition. The
right way to pose this question is to ask if every graph G∗n ∈ Gn,4 has a lock decomposition
a.a.s. We can formalize this by asking if the two models, G∗n and Gn,4, are contiguous. (See
chapter 4). This would imply that properties that hold a.a.s. for Gn,4 would also hold
a.a.s. in G∗n. In particular, by Theorems 1.4 and 1.5 we would know that

• G ∈ G∗n would be 3-colourable a.a.s.

• G ∈ G∗n would have a diameter of size O(log(n)) a.a.s.

2.1.2 Generating graphs in G∗n

Before we can examine what a graph in G∗n typically looks like, we need to figure out how
to find graphs in G∗n. We use the following model to generate graphs in G∗n.

Consider n labelled, directed cycles, each coloured with a colour in {1, 2, . . . , n}. These
are our initial cycles. For every vertex v in an initial cycle, say cycle ci, it is desired that
v must be matched to another vertex w in a different initial cycle j 6= i, such that v and
w are identified in the final graph. How do we do this?

Define (vi)cj to be vertex vi in cycle cj. When not otherwise stated, we will assume that
the vertices in each initial cycle ci are labelled from 1 to 2n− 2, where there is a directed
edge from i to i+ 1 for all i < 2n− 2 and an edge from 2n− 2 to 1.

13



Let the identification of two vertices, say v1 in cycle ci and v2 in cycle cj, j 6= i, be
described by

(v1)ci ←→ (v2)cj .

For i ∈ {1, 2, . . . , n}, consider a random bijective function φci that assigns ([n]\{i})×{u, d}
uniformly at random to the vertices in ci.

φci : [2n− 2]→ ([n] \ {i})× {u, d}

Let φci [1] denote the first component of φci , while φci [2] denotes the second. Let us call
φc2 [2](v) the label of vertex v. To get some intuition, assume that u stands for up and d
stands for down. After identifying two vertices with each other, we can imagine that one
former vertex will inhabit the “upper” floor of the new vertex, while the other one lives
“downstairs” — see the example in Subsection 2.1.1— and for each new vertex both upper
and lower floor must have exactly one initial vertex.

So (v)ci → (j, k). The values (j, k) which φci assigns to each vertex v can be explained
as follows: cj is the other initial cycle v will be in, and k is v’s label. In cj, there is some
vertex w such that φcj(w) = (i, k′), k 6= k′, i.e. there is some other vertex w that is assigned
to the initial cycle ci and has the opposite label from v. After the identifications, v and w
will be one vertex. This means that

(v)ci ←→ (v′)cj ⇐⇒


φci [1](v) = j,

φcj [1](v′) = i,

φci [2](v) 6= φcj [2](v′).

.

2.1.3 How many different graphs are there in G∗n?

To find the number of graphs in G∗n, |G∗n|, consider that there are 2n−2 outcomes for each
mapping φc, and the bijections φ consider labelled, directed and coloured graphs. This
model gives

((2n− 2)!)n

n!(2n− 2)n2n
2−n(n−1)/2,

different graphs, where the terms in the fraction come from the different possible bijections,
accounting for the over-counting due to considering labelled (the (2n− 2)n term), directed
(the 2n term) graphs such that each cycle is given a colourings (the n! term). The 2−n(n−1)/2

term occurs because for every identification of vertices in two given cycles ci and cj, the
labellings (φci [2] and φcj [2]) can be exchanged.
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Considering all possible relabellings of the vertices, and using Stirling’s formula n! ∼√
2πn

(
n
e

)n
, this then gives

|G∗n| =
(n(n− 1))!((2n− 2)!)n

n!(n− 1)n
2−n(n+3)/2

∼
√

2πn(n− 1)(n(n−1)
e

)n(n−1)(
√

2π2(n− 1)(2(n−1)
e

)2(n−1))n
√

2πn
(
n
e

)n
(n− 1)n

2−n(n+3)/2

=

√
n(n− 1)(n(n− 1))n(n−1)(

√
π(n− 1))n(n− 1)2(n−1)n22(n−1)n+n

e3n(n−1)−n√nnn(n− 1)n
2−n(n+3)/2

∼ n · n2n(n−1) ·
√
π
n · nn/2 · n2(n−1)n · 22(n−1)n+n

e3n(n−1)−n · n1/2 · nn · nn
2−n(n+3)/2

= 2(3n2−5n)/2
√
π
n
e−3n2+4nn4n2− 11

2
n+1/2

possible decompositions of labelled 4-regular graphs in total. Let Z denote the number of
decompositions of a given multigraph G ∈ Pn,4 into such cycles. By equation (1.2) and
Stirling’s formula, we know that

|Pn,4|−1 =
(4n)!

(2n)!22n(4!)n

∼
√

2π4n
(

4n
e

)4n

√
2π2n

(
2n
e

)2n
22n(24)n

= Θ

( (
4n
e

)4n(
2n
e

)2n
22n(24)n

)
= Θ(n2n2ne−2n3−n). (2.1)

With these calculations, as |G∗n| grows as a rate Ω(nn
4
), while Pn,4 grows at a rate o(nn

2
),

it is thus easy to see that

E(Z) =
|G∗n|
|Pn,4|

→ ∞.

This is good news, as it is an indication that contiguity (see Chapter ) may hold.
However, there is not much to be deduced from this for sure: Even if E(Z)→∞, it is still
possible that not almost all graphs in Gn,4 can be decomposed initial cycles.

2.2 Great cycles random graphs

As described before, arrangement graphs translate to a graph with n cycles c1, c2, . . . , cn
on 2n− 2 vertices, labelled by 1, 2, . . . , 2n− 2. We will continue to call c1, c2, . . . , cn initial
cycles. The model works as follows:
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• For each pair of cycles ci and cj, i 6= j, it holds that ci and cj intersect in precisely
two vertices.

• Let vci,cj and v′ci,cj denote the intersections of ci and cj, and let P i
ci,cj

and P i′
ci,cj

denote

the the two paths between vci,cj and v′ci,cj in ci, and P j
ci,cj

and P j′
ci,cj

denote the the
two paths between vci,cj and v′ci,cj in cj. For every k 6= i, j, it must hold that the

intersections of ck with ci and cj separate vci,cj and v′ci,cj on P i
ci,cj

and P i′
ci,cj

, and on

P j
ci,cj

and P j′
ci,cj

, respectively.

Consider only ci. Note that for any given cj, it holds that every ck, k 6= i, j, separates
both intersections of ci and cj, on both P i

ci,cj
and P i′

ci,cj
. This means that for both paths

along ci from vci,cj to v′ci,cj , we have n vertices. In fact, as each initial cycle has 2n − 2

vertices, with vci,cj and v′ci,cj , these are all the vertices there are, and so P i
ci,cj

and P i′
ci,cj

will
always have the same length, for all i, j. This is important, as it tells us that in a certain
sense, each cycle in this model is symmetrical. As every pair vci,cj , v

′
ci,cj

will be separated
by two paths of length n − 1 on ci, it suffices to know where vci,cj is located to know the
location of v′ci,cj . See example in Figure 2.1.

For an initial cycle ci, denote the cycle vertex j is paired with by c(j). With the above
reasoning, it must hold that c(j) = c(j + n− 1) for j ≤ n− 1.

Take the space of all such graphs of cycle arrangements on n cycles, and pick one of
them uniformly at random. We call this model the great cycle random graph model, and
denote graphs in this model with GAn .

2.2.1 Generating graphs in GAn

Similarly to Section 2.1.2, we want to find a function such that each graph in GAn is
generated uniformly at random. To do this, consider n directed cycles, c1, c2, . . . , cn, on
2n−2 vertices, labelled 1, 2, . . . , 2n−2, such that there is an arc between i and i+1, for all
i < 2n− 2 and there is an arc between 2n− 2 and 1. In any cycle ci, as c(s) = c(s+n− 1)
for s ≤ n− 1, it is sufficient to generate c(s) for the first n− 1 vertices in the cycle.

What we do not know is if vertex s is identified with a vertex in [n− 1] of c(s), or if it
is identified with a vertex in [2n− 2] \ [n− 1]. As in Section 2.1.2, the function generating
these random graphs will need to assign a labelling to each vertex. For every ci, consider
an initial random function φ̃ici that assigns ([n] \ {i}) × {−1, 1} uniformly at random to
the first n− 1 vertices in ci.

φ̃ici : [n− 1]→ ([n] \ {i})× {−1, 1}.
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Figure 2.1: An example of a possible alignment when n = 7 and a given cycle on 12
vertices. The labelling beside vertex i gives c(i). Note that c(i) = c(i+ 6), for i ≤ 6.

such that each φ̃ici maps to each element in ([n] \ {i}) exactly once. As in section 2.1.2,
for a given vertex s, let φfci [1](k) denote the first component of the mapping at s, while
φfci [2](k) denotes the second.

Then, to finalize the generation of this random graph, we define a second, bijective
function φ̃fci that assigns some value from ([n] \ {i})× {−1, 1} to all vertices in ci.

φ̃fci : [2n− 2]→ ([n] \ {i})× {−1, 1},

such that

φ̃fci(s) =

{
φ̃ici(s) if s ≤ n− 1

(φici [1](s− (n− 1)),−φici [2](s)) otherwise.

So if (v)ci → (j, k), the values (j, k) which φfci assigns to each vertex v have the same
explanation as in section 2.1.2, except that the label is a bit different: cj is the other initial
cycle v will be in, and k is v’s label. In cj, there is some vertex w with φcj(w) = (i, k′),
such that k · k′ = 1, i.e. there is some other vertex w that is signed to the initial cycle ci
and has the same label as v. After the identifications, v and w will be one vertex. This
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means that

(v)ci ←→ (v′)cj ⇐⇒


φfci [1](v) = j,

φfcj [1](v′) = i,

φtci [2](v) = φcj [2](v′).

.

2.2.2 How many different graphs are there in GAn ?

Similarly to Section 2.1.2, we can count the number of graphs in GAn . There are n −
1 outcomes for each mapping φic, and the bijections φf consider labelled, directed and
coloured graphs. This model gives

((n− 1)!2n−1)n

n!(2n− 2)n2n
2−n(n−1)/2

different graphs, where the terms in the fraction come from the different possible bijections
of φfc , accounting for the over-counting due to considering labelled (the (2n − 2)n term),
directed (the 2n term) graphs with given colours (the n! term). The 2−n(n−1)/2 term occurs
because for every identification of vertices in two given cycles ci and cj, the labellings (φfci [2]
and φfcj [2]) can be exchanged.

Considering all possible relabellings of the vertices and using Stirling’s formula, this
then gives

|GAn | =
(n(n− 1))!((n− 1)!)n

n!(n− 1)n
2

n(n−1)
2
−2n

∼
√

2πn(n− 1)(n(n−1)
e

)n(n−1)(
√

2π(n− 1)( (n−1)
e

)(n−1))n
√

2πn
(
n
e

)n
(n− 1)n

2
n(n−1)

2
−2n

∼
√
n(n− 1)(n(n−1)

e
)n(n−1)(

√
2π(n− 1)( (n−1)

e
)(n−1))n

√
n
(
n
e

)n
(n− 1)n

2
n(n−1)

2
−2n

∼ e−2n2+3nπn/221/2n2−2nn3n2− 9
2
n+1/2

possible decompositions of labelled 4-regular graphs in total. This implies that if ZC
denotes the number of decompositions of a given graph G ∈ Pn,4 into great cycles, from
equation (2.1)

E(ZC) =
|GAn |
Pn,4

→∞.
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Chapter 3

Short cycles

When given a random graph model, one of the first things that is often done is to count
the number of short cycles, or rather find out the asymptotic distribution of short cycles,
as in [1, 22]. The easiest way to do so is using the method of moments. In this chapter, I
will briefly describe the method of moments, and then give proofs that short cycles in both
the pairing model as well as in the great cycles random graph model are asymptotically
distributed according to the Poisson law. As these calculations are quite tedious, I will
only state the expected number of i-cycles in the random cycle arrangement model and
explain why it should also be asymptotically distributed according to the Poisson law.

To simplify reading and writing of these proofs, by abuse of notation we will assume n
to be fixed and very large, so that instead of writing Yi(n) for a function, we will write Yi.

3.1 The method of moments

Here, we will briefly describe the method of moments, see, e.g. [16]. What it says is that,
given some circumstances, if the moments of a random variable are known, it is possible
to find its distribution. Let us first define moments.

Definition 3.1. The moments of a random variable X are the numbers

E(Xk),

k ≥ 1. The factorial moments E(X)k of a random variable X are the numbers defined by

E(X)k := EX(X − 1)(X − 2) · · · (X − k + 1),

for k ≥ 1.
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Definition 3.2. We say the distribution of a random variableX is determined by its moments
if

• X has finite moments and

• every random variable that has the same moments as X has the same distribution.

In particular, if X has normal or Poisson distribution, X is determined by its moments.
Note that if the moments of a random variable are finite, then so are its factorial moments
— switching from moments to factorial moments can be seen as a mere change of basis.
We now have enough background to state the theorem behind the method of moments:

Theorem 3.1 (Method of moments, [16]). Let X be a random variable with a distribution
that is determined by its moments. If X1, X2, . . . are random variables with finite moments

such that E(Xn)k → E(X)k as n→∞ for every integer k ≥ 1, then Xn
d→ X.

In particular, for Xn integer valued random variables, this theorem can also be stated
in the less general version that we will be using:

Theorem 3.2 ([25]). Let λ = λ(n) be non-negative and bounded. For all n ≥ 1, let Xn be
a non-negative integer, bounded random variable such that for all k ≥ 0,

E(Xn)k = λ(n)k + o(1).

Then for all i ≥ 0,

P(Xn = i) = e−λ(n)λ(n)i

i!
+ o(1).

For λ fixed this implies that X
d→ Po(λ).

3.2 The expected number of i-cycles in G∗n

To make things easier to read, we start by giving the expected number of i-cycles in G∗n
before giving the higher moments.

Let Yi denote the number of i-cycles in a graph G ∈ G∗n. Let (u, v)c denote the edge
from u to v in an initial cycle c. Note that, in G∗n, a cycle is determined by a sequence of
vertices, edges and vertex identifications denoting a change of initial cycles, i.e.

(v1)c, (v1v2)c, (v2)c, . . . , (vi−1vi)c, (vi)c, (vi)c ←→ (u1)d, (u1)d, . . . .

Define a random variable as follows

X i,j
c,v =


1 (v, v + 1)c is an edge in an i-cycle consisting of j

edge-disjoint paths in initial cycles and (v − 1, v) is not an edge in this i-cycle

0 otherwise.
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3.2.1 2-cycles in G∗n

Recall that a graph in G∗n is not necessarily simple. We will start by counting the expected
number of double edges, or 2-cycles, EY2. This calculation will be very detailed. The
calculations of larger cycles will be in less depth.

Using the definition of X i,j
c,v, we get

E(Y2) =
1

2
E
∑
v,c

X2,2
c,v

=
1

2
n(2n− 2)EX2,2

1,1 ,

because there are n initial cycles in the model, each having 2n−2 vertices, and because all
vertices are equivalent. Also, note that we count each 2-cycle twice. As X i,j

c,v is an indicator
variable,

E(Y2) = n(n− 1)P(X2,2
1,1 = 1)

= n(n− 1)
∑
c,j

P(X2,2
1,1 = 1 ∧ φ1(1) = (c, j)).

Here, we are just using the law of total probability and summing over all possible values
of φ1(1). Because φi assigns each value uniformly at random, for all i, it follows that

E(Y2) = n(n− 1)(2n− 2)P(X2,2
1,1 = 1 ∧ φ1(1) = (2, 1)).

Having set the beginning vertex and its neighbouring cycle, we can thus proceed to define
the vertex in the neighbouring cycle.

E(Y2) = n(n− 1)(2n− 2)
2n−2∑
i=1

P(X2,2
1,1 = 1 ∧ φ1(1) = (2, 1) ∧ φ2(i) = (1, 1))

= n(n− 1)(2n− 2)(2n− 2)P(X2,2
1,1 = 1 ∧ φ1(1) = (2, 1) ∧ φ2(1) = (1, 1)),

which again follows because all vertices are equivalent.

Next, after deciding that vertex 1 from cycle 1 will be identified with vertex 1 from cycle
2, and because we are only considering the directed edges away from vertex 1, to consider
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the double edge we must distinguish between two cases: Either it will form a directed cycle,
(12)1, 21 ←→ (2n− 2)2, (2n− 2, 1)2, (1)2 ←→ (1)1, or it will not, i.e. (2)1 ←→ (2)2. So

E(Y2) = 22n(n− 1)3P(φ1(1)=(2,1)∧φ2(1)=(1,1)∧φ1(2)=(2,2)∧(φ2(2)=(1,2)∨φ2(2n−2)=(1,2)))

= 23n(n− 1)3P(φ1(1) = (2, 1) ∧ φ2(1) = (1, 1) ∧ φ1(2) = (2, 2) ∧ φ2(2) = (1, 2))

= 23n(n− 1)3(P(φ1(1) = (2, 1) ∧ φ1(2) = (2, 2)))2

where the last equality follows because all cycles are independent and equivalent. The rest
is then basic probability theory:

E(Y2) = 23n(n− 1)3(P(φ1(1) = (2, 1) | φ1(2) = (2, 2))P(φ1(2) = (2, 2)))2

= 23n(n− 1)3

(
1

2n− 3

1

2n− 2

)2

∼ 1

2

Note here that it also follows that E(X2,2
c,v ) ∼ 1

2
n−2.

3.2.2 i-cycles in G∗n

Using the same procedures as for computing E(Y2), we can easily compute E(Yi). Because
the assignment of vertices to each other is chosen uniformly at random, for each vertex,
P(X i,j

c,v = 1) = P(X i′,j
c,v = 1), for i, i′ ≥ j, and thus

P(X i,j
c,v = 1) =

(
i− 1

j − 1

)
P(Xj,j

c,v)

where
(
i−1
j−1

)
is due to the choices there are of placing different length cycles.

Any i-cycle can contain edges of between 2 and i initial cycles.

For Yi, the number of i-cycles in the graph, it holds that

E(Yi) = E
i∑

j=2

1

j

∑
c,v

Xj,j
c,v = n(2n− 2)

i∑
j=2

1

j

(
i− 1

j − 1

)
P(Xj,j

1,1 = 1). (3.1)

What is the probability that a given edge (v, v + 1) will be part of a path in an i-cycle
on i-paths, i.e. P(X i,i

c,v = 1)? We must distinguish between two cases here: the i paths
come from i different initial cycles, or at least one initial cycle is used more than once.

P(X i,i
1,1 = 1 ∧ all paths from different initial cycle)

= (n− 1)i−1(2n− 2)i−12i−12i(2n− 2)−i(2n− 3)−i

∼ 2i−2n−2,
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where the first two terms of the product come from the different ways the cycles, vertices
and directions can be chosen, next come the possible labellings the different φs may give,
while the last two terms come from the probabilities that the different φs will choose the
correct cycle.

Next let us consider the case where there exist paths that use the same initial cycle.
Define the event Aj as the existence of j paths that use some initial cycle that is already
used by a previous path. Here, previous means closer to (1)1 in the direction of the cycle
going through arc (1, 2)1.

P(X i,i
1,1 = 1 ∧ Aj)
≤ (n− 1)i−j−1(2n− 2)i−12i−1(2n− 2)−i+j(2n− 3)−i+j(2n− 2− j − 1)−2j2ic(i, j)

∼ n−2−j2i−2c(i, j) = o(n−2)

where c(i, j) is a constant.

Thus, from equation (3.1) and some algebra, it follows that

E(Yi) = 2n(n− 1)

(
i∑

j=3

1

j

(
i− 1

j − 1

)
2j−2n−2 +

1

2

(
i− 1

1

)
1

2
n−2

)
(1 + o(1))

=
3i − i2 − i− 1

2i
(1 + o(1)).

3.3 The distribution of short cycles in the pairing

model

Before things get somewhat complicated and we start working out higher moments of short
cycles in G∗n, let us consider the distribution of short cycles in the pairing model.

Let Ỹi be the number of i-cycles in the pairing model, Pn,4. The expected value of Ỹi
can be calculated as follows:

E(Ỹi) ∼ (n)i
1

2i

(
3

n

)i
∼ 3i

2i
,

where we are again considering all (n)i possible directed cycles, we take away the direction
and then calculate possibilities of the corresponding edges being present in the pairing
model.
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What about higher moments? Let Z̃i
j denote the jth possible i-cycle in a graph in Pn,4.

Let

Jl :={(j1, . . . , jk) | Z̃i
1, . . . , Z̃

i
k all distinct and exactly l vertices of the

Z̃i
jrs are used already by a cycle of lower index}

for l = 0, . . . , ik. Clearly,

E[Ỹ ]i =
∑

j1,...jk∈
⋃
Jl

Z̃i
1 · · · Z̃i

k.

First let us consider J0. As these cycles do not share any edge, they are independent of
each other, so we have∑

j1,...jk∈J0

Z̃i
1 · · · Z̃i

k ∼ (n)ik

(
1

2i

)k (
3

n

)ik
∼
(

3i

2i

)k
.

Next, we will consider Jj, for some 1 ≤ j ≤ ik, such that Jj is non-empty. Note here
that, if a cycle shares several vertices and some edges with another cycle, it will always
share at least one more vertex than edges. Also note that if all vertices and edges of a
cycle are present in already existing cycles (i.e. cycles of lower index) then these cycles
must share more vertices than edges. This means that, if we let m denote the number of
edges shared, m < l. It thus follows that

∑
j1,···jk∈Jl

Z̃i
1 · · · Z̃i

k ≤
l−1∑
m=0

(n)ik−l

(
3

n

)ik−m(
1

2i

)k
c(l,m, k)

≤ (n)ik−l

(
3

n

)ik−l+1(
1

2i

)k
c′(l,m, k)

= o(1),

where c(l,m, k) and c′(l,m, k) are constants counting the different possible constellations
of cycles. Because there are less than ik Jrs to be counted, it follows that E[Ỹi]k =
(EỸi)k + o(1), so with the method of moments, it follows that in Pn,4, the number of

i-cycles is asymptotically Poisson distributed with mean 3i

2i
.

3.4 The distribution of short cycles in G∗n

To find out how short cycles are distributed in G∗n, we will use the method of moments
again, (see Section 3.1.) so we will need to calculate higher moments of the variables Yi.
We will start with the higher moments of 2-cycles and then move to general i-cycles.

24



3.4.1 The distribution of double edges in G∗n

We start with E[Y2]k, the kth factorial moment of double edges. Let Zj, j = 1, 2, . . . denote
the jth 2-cycle in G. Let

J := {(i1, . . . , ik) | i1, . . . , ik all distinct and Zi1 , . . . , Zik do not share an initial cycle}

and

J ′ := {(i1, . . . , ik) | i1, . . . , ik all distinct and at least two of the Zi1 , . . . , Zik share an initial cycle}.

Let

E[Y2]k = E
∑

j1,...,jk∈J∪J ′
Zj1Zj2 · · ·Zjk

= E
∑

j1,...,jk∈J

Zj1Zj2 · · ·Zjk + E
∑

j1,...,jk∈J ′
Zj1Zj2 · · ·Zjk (3.2)

The first part of the sum in (3.2) can be calculated as follows:∑
j1,...,jk∈J

EZj1Zj2 · · ·Zjk = (n)2k2
−k(2n− 2)2k2k(2n− 2)−2k(2n− 3)−2k2k (3.3)

= 2−k + o(1).

Here, (3.3) is explained as follows: there are (n)k2
−k ways to choose k pairs of initial cycles

that form the Zjs, the factor 2−k accounts for the fact that these pairs are unordered. Each
of these 2k cycles has 2n − 2 edges to choose from, and for each pair of edges there are
two possible orientations of the edges towards each other to be found (i.e. if the edges
form a directed cycle or not). Finally, the probability that the chosen vertices will pair up
is (2n − 2)−2k(2n − 3)−2k2k, where the factor 2k comes from the two choices of labellings
(φc[2]) for each pair of cycles.

Consider the second part of (3.2). Define

J ′l :={(i1, . . . , ik) | i1, . . . , ik all distinct and l edges of the Zi1 , . . . , Zik
are in an initial cycle that is used by other cycle with lower index}.

Clearly,

E
∑

j1,...,jk∈J ′
Zj1Zj2 · · ·Zjk = E

k∑
l=2

∑
j1,...,jk∈J ′l

Zj1Zj2 · · ·Zjk
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Consider each J ′l separately:

E
∑

j1,...,jk∈J ′l

Zj1Zj2 · · ·Zjk ≤ (n)2k−l2
−k+l(2n− 2)2k2k(2n− 3− l)−4k2k (3.4)

∼ 2−k+ln−l = o(1).

Here, the (n)2k−l2
−k+l in (3.4) comes from the different possible ways of choosing the initial

cycles involved, while for each pair of cycles there are less than 2(2n−2)2 ways of choosing
the edges involved times their orientation towards each other. The probability of all these
vertex identifications taking place in this way is less than (2n− 3− l)−4k2k.

Thus, with the method of moments, it follows that asymptotically the number of double
edges in G∗n have a Poisson distribution with parameter 1

2
.

3.4.2 Higher moments and distribution of larger cycles in G∗n

Let us next consider the higher moments of larger cycles, i.e. [Yi]k, i > 2. Let Zi
j denote

the indicator function of jth i-cycle in the graph. As before, set

J := {(j1, . . . , jk) | j1, . . . , jk all distinct and Zi
j1
, . . . , Zi

jk
do not share an initial cycle}

and

J ′ :={(j1, . . . , jk) | j1, . . . , jk all distinct and at least two of the

Zi
j1
, . . . , Zi

jk
share an initial cycle}.

Again, we have

E[Yi]k =
∑

j1,...,jk∈J∪J ′
EZi

j1
Zi
j2
· · ·Zi

jk
=

E
∑

j1,...,jk∈J

Zi
j1
Zi
j2
· · ·Zi

jk
+ E

∑
j1,...,jk∈J ′

Zi
j1
Zi
j2
· · ·Zi

jk

Now, note first that

E
∑

j1,...,jk∈J

Zi
j1
Zi
j2
· · ·Zi

jk
=

∑
j1,...,jk∈J

P(Zi
j1

= 1 ∧ Zi
j2

= 1 ∧ . . . Zi
jk

= 1)

=
∑

j1,...,jk∈J

P(Zi
j1

= 1)P(Zi
j2

= 1) · · ·P(Zi
jk

= 1)
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where the last equality follows because the i-cycles, in this case, are completely indepen-
dent. Recall that for i-cycles, i ≥ 3, it holds that

E(Yi) = 2n(n− 1)

(
i∑

j=3

1

j

(
i− 1

j − 1

)
2j−2n−2 +

1

2

(
i− 1

1

)
1

2
n−2

)
(1 + o(1))

=
3i − i2 − i− 1

2i
(1 + o(1)).

Because (n)i ∼ (n− r)i, r ≤ ik, it follows that

E
∑

j1,...,jk∈J

Zi
j1
Zi
j2
· · ·Zi

jk
=

(
3i − i2 − i− 1

2i

)k
(1 + o(1)).

Next, let us consider what happens with J ′. Define J ′l as for 2-cycles. Let Rk :=
{2, 3, . . . i}k. For a vector rk ∈ Rk, let rk(j) denote the jth entry in rk. Let B(rk) denote
the event that, for given k cycles 1, 2, . . . , k, cycle j uses exactly rk(j) initial cycles. It will
be clear from context which k cycles are meant. Let |rk| :=

∑k
j=1 rk(j). We are now set

to consider the second part of the expected value of [Yi]k.

E
∑

j1,...,jk∈J ′
Zi
j1
Zi
j2
· · ·Zi

jk
=

ik∑
l=1

E
∑

j1,...,jk∈J ′l

Zi
j1
Zi
j2
· · ·Zi

jk

Consider each J ′l 6= ∅ separately:

E
∑

j1,...,jk∈J ′l

Zi
j1
Zi
j2
· · ·Zi

jk
=

∑
j1,...,jk∈J ′l

P(Zi
j1
Zi
j2
· · ·Zi

jk
= 1)

=
∑

rk∈Rk

∑
j1,...,jk∈J ′l

P(Zi
j1
Zi
j2
· · ·Zi

jk
= 1 ∩B(rk))

≤
∑

rk∈Rk

(n)|rk|−l(2n− 2)|rk|22|rk|c(rk)(2n− 2− l)−2|rk|+l−1 (3.5)

= o(1),

where (3.5) can be explained as follows: In sum, |rk| − l cycles are chosen, and for each
cycle counted there will be at most 2n−2 vertices to be chosen from as “beginning vertices”
in the initial cycles. There will also be 2 labellings possible each, and 2 directions the cycle
may take from these vertices. c(rk) is a constant that counts the different possible path
lengths there are of these cycles intersecting initial cycles, i.e.

c(rk) =
1

|rk(j)|

k∏
j=1

(
i− 1

rk(j)− 1

)
.
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The last term is a crude estimate of the probabilities involved: Even if some of the paths
of some cycles are identical on some initial cycles, the overlap must stop at some point. As
Rk is finite, it follows that this expression is o(1).

We can thus conclude, with the method of moments, that the distribution of i-cycles
in G∗n tends towards a Poisson law with mean 3i−i2−i−1

2i
.

3.5 Expected number of i-cycles in GAn

The calculations for the short cycle count in GAn follow the calculations for G∗n closely. The
main difference here is that GAn cannot have any double edge, and for i < n− 1, it can also
not have an i-cycle on only two initial cycles. Thus, we start at i = 3. Let us again call
the number of i-cycles Yi, as well as define X i,j

c,v as in Section 3.2.

Again with the same reasoning, we have that

E(Yi) = E
i∑

j=3

1

j

∑
c,v

X i,j
c,v

= n(2n− 2)
i∑

j=3

1

j

(
i− 1

j − 1

)
P(Xj,j

1,1 = 1). (3.6)

We can now proceed to calculate P(Xj,j
1,1 = 1). Again, consider two cases, either all j edges

are in different initial cycles, or they are not. Let Al denote the event that l edges use an
initial cycle that was used before, where before means closer to vertex (1)1 in the path.
First, we have that

PGAn (Xj,j
1,1 = 1∧ all paths are from different initial cycles)

= (n− 1)j−1(2n− 2)j−12j−12j(n− 1)−j2−j(n− 2)−j2−j

∼ 2j−2n−2, (3.7)

where the first term counts the number of possible initial cycles, the next term counts
the number of vertices to choose from, then come the number of directions to go and the
possible initial label of each vertex. Finally, we divide by the probabilities of φf assigning
these vertices to each other.

On the other hand, for a constant c(j, l), we have

P(Xj,j
1,1 = 1 ∧ Al) ≤(n− 1)j−l−1(2n− 2)j−12j−12j

(n− 1)−j+l2−j+l(n− 2)−j+l2−j+l(n− 1− j−)−2l2−2l2ic(j, l)

=o(n−2).
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Note that the value of (3.7) dominates this expression, and also that PGAn (X i,i
1,1 =

PG∗n(X i,i
1,1).

Thus, from equation (3.6), we get that

E(Yi) = n(2n− 2)
i∑

j=3

1

j

(
i− 1

j − 1

)
(2j−2n−2 + o(n−2))

=
3i − 2i2 − 1

2i
(1 + o(1))

As the calculations for the expected number of i-cycles in GAn were extremely similar to
the expected number of i-cycles in G∗n, the calculations for higher moments of i-cycles in
GAn should also be similar, as should be the result. In future research, if necessary, it would
probably be easy to prove that the number of i-cycles in GAn also asymptotically follows a
Poisson distribution, while there seems to be little need to do so at present.
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Chapter 4

Contiguity

When given different random graph models on the same sequence of spaces of graphs (the
space depends on n), a question of great interest is that of contiguity. Informally, contiguity
means that if almost any graph in one space has a given property, almost every graph in
the other space will also have this property.

In this section, we will briefly explain what contiguity is and give some examples of
contiguity. We will state the following conjecture, that G∗n and Gn,4 might be contiguous.
This would be a wonderful result, as it would imply that almost all graphs in G∗n are 3-
colourable! (See Theorem 1.5.) Finally, we will explain why we think this conjecture might
hold, citing a theorem with which contiguity can be proven.

4.1 Definition and examples of contiguity

Let us begin by stating formally what contiguity means, see e.g. [16, 25]:

Definition 4.1. Given two sequences of probability spaces (Pn,Ωn,Fn) and (Qn,Ωn,Fn),
n ≥ 1 that are defined on the same measurable space (Ωn,Fn), we call two sequences
contiguous if for every event A

PPn(A) = 1 a.a.s. ⇐⇒ PQn(A) = 1 a.a.s.

We then write (Pn,Ωn,Fn) ≈ (Qn,Ωn,Fn).

Note that contiguity defines an equivalence relation.

To clarify this concept, let us give some examples [25] and explain what they mean. For
two probability spaces of random graphs on the same vertex set, G and G ′, define the sum
G+G ′ := G∪G ′. As this gives a multigraph, define the graph-restricted sum G⊕G ′ := G∪G ′
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conditioned on the resulting graph being simple. Note that G ⊕ G ′ is only defined if there
exists at least one such simple graph. Let Hn denote a uniformly random Hamilton cycle.
The following theorem holds:

Theorem 4.1 ([25]). It holds that

Gn,2 ⊕Hn ≈ Gn,4

and
Hn ⊕Hn ≈ Gn,4.

What does this mean? This means that, a.a.s., any graph in Gn,4 decomposes into a
random 2-regular graph and a Hamiltonian cycle, but also that a.a.s., any graph in Gn,4

decomposes into two Hamiltonian cycles. This immediately implies that for n even, any
graph in Gn,4 is a.a.s. 4-edge colourable.

In this line of thought, a big goal would be to prove that G∗n ≈ Gn(n−1),4. This would
mean that anything that applies a.a.s. to Gn,4 also applies to G∗n. In particular, G∗n would
be a.a.s. 3-colourable. (See section 1.4.2.) As I will explain in the next section, there is
reason to believe that this might hold. Thus, we have the following

Conjecture 4.1. Gn(n−1),4 ≈ G∗n.

4.2 Implications of Contiguity

Showing that G∗n andGn(n−1),4 are contiguous would facilitate the proof of many open
problems mentioned here; in fact, make them redundant. If G∗n and Gn(n−1),4 were proven
to be contiguous, results about properties that hold a.a.s. for Gn,4 would hold also for G∗n.
In particular, we would have

• an easier proof that G∗n is a.a.s. 4-connected, (See Theorem 1.3 and also the next
chapter, Chapter 5.)

• the result that the diameter of a graph G ∈ G∗n is also a.a.s. O(log(n)), (See Theorem
1.4.), and, most importantly

• we would know that a.a.s. a graph G ∈ G∗n is a.a.s. 3-colourable. (See Theorem 1.5.)

The last point would be of great interest, especially considering Conjecture 1.1.
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4.3 The small subgraph conditioning method and a

theorem for contiguity

Clearly, it would be wonderful to prove contiguity. There exist methods of doing this,
though they are not necessarily straightforward. One of them uses the so-called small
subgraph conditioning method.

This section follows [25]. In some cases, for a random graph process G = G(n), we wish
to count the expected value of some random variable Y = Y (n). For example, Y could be
the number of perfect matchings on G ∈ G(n), or the number of lock decompositions. Let
σY denote the variance of Y . We want to show that Y > 0 a.a.s.. The problem occurs
when E(Y ) = Θ(σY ), so we cannot use Chebyshev’s inequality (Theorem 1.1) to show this.

The method to circumvent this problem is, in some cases, to realize that Y depends
strongly on some small and not too common subgraphs that do occur — short cycles,
mainly — and that conditioning on these small subgraphs affects E(Y ) and also significantly
reduces the variance of Y . This method can then be used to show that two models are
contiguous.

We need some more definitions before we can state the theorem. Staying in the space
G, assume that E(Y ) ≥ 0. Let PG(A) denote the probability of the event A in this space.
Let us define a new space, G(Y ), such that the probability of a graph G ∈ G(Y ) occurring is

PG(Y )(G) = PG(G)
Y (G)

E(Y )
.

Note that for an event A it then holds that

PG(Y )(A) =
∑
G∈G

A occurs in G

PG(G)Y (G)

E(Y )

=
∑
G∈G

Y (G)>0

PG(G)Y (G)IA∈G
E(Y )

=
EG(IA ∧ Y )

E(Y )
,

where IA denotes the indicator function of the event A.

To see a connection to G∗n, note that G∗n is a model where every lock decomposition
appears with equal probability. For a given graph G, we let Y denote the number of lock

32



decompositions. It holds that PG∗n(G) = Y (G)
|G∗n|

. It also holds that

P
G

(Y )
n(n−1),4

(G) = PG∗n(G)
Y (G)

E(Y )

=
1

|Gn(n−1),4|
Y (G)∑
G Y (G)

|Gn(n−1),4|

=
Y (G)

|G∗n|
,

so G∗n is the same as the space G
(Y )
n(n−1),4.

We have the following theorem:

Theorem 4.2 (Ad verbatim from [25]). Let λi > 0 and δi ≥ −1, i = 1, 2, . . . , be real
numbers and suppose that for each n there are random variables Xi = Xi(n), i = 1, 2, . . . ,
and Y = Y (n) defined on the same probability space G = G(n) such that Xi is non-
negative integer valued, Y is non-negative and EY > 0 (for n sufficiently large). Suppose
furthermore that

1. For each k ≥ 1 Xi, i = 1, 2, . . . , k are asymptotically independent Poisson random
variables with EXi → λi;

2. For every finite sequence j1, . . . , jk of non-negative integers:

E(Y (X1)j1 . . . (Xk)jk)

EY
→

k∏
i=1

(λi(1 + δi))
ji

3.
∑

i λiδ
2
i <∞;

4. EY 2
n

(EYn)2
≤ exp (

∑
i λiδ

2
i ) + o(1) as n→∞.

Then

P(Yn > 0) = exp

(
−
∑
δi=−1

λi

)
+ o(1)

and, provided
∑

δi=−1 λi <∞,

Ḡ ≈ Ḡ(Y )

where Ḡ is the probability space obtained from G by conditioning on then event ∧δi=−1(Xi =
0).

33



With this theorem, we can work towards proving Conjecture 4.1. Let Y again be the
number of lock decompositions, and Xi be the number of i-cycles in a graph G ∈ Gn(n−1),4.
Let Zi be the number of i-cycles in G ∈ G∗n. Following the notation from Theorem 4.2,
note that

1. The distribution of i-cycles inGn(n−1),4 asymptotically follows a Poisson law, ∼ Po(λi)

(See Section 3.3), where λi = 3i

2i
.

2. Let Wi1 ,Wi2 , . . . denote the different subgraphs of Kn(n−1) that are i-cycles. We get
that

EY (Xi)

EY
=
∑

G∈Gn,4

∑
i1,i2,...,ij distinct

I(Wi1
∈G)I(Wi2

∈G) · · · I(Wij
∈G)Y (G)PGn,4(G)

E(Y )

=
∑

G∈Gn,4

∑
i1,i2,...,ij distinct

IWi1
∈GIWi2

∈G · · · IWij
∈GPG(Y )

n,4
(G)

= E
G

(Y )
n,4

(Xi)j

= EG∗n(Xi)j

= E(Zi)

=
3i − i2 − i− 1

2i
(1 + o(1))

→ µi,

where I(H) denotes the indicator function for a subgraph H being in a graph. The
last three equations follow from Section 3.4. The same thing should not be too hard
to show for combinations of different sizes of i-cycles.

3. Let δi = −1 + µi/λi = −i2−i−1
3i

. The sum

∑
i≥3

λiδ
2
i =

∑
i≥3

3i

2i

(
i2 + i+ 1

3i

)2

=
335

144
+ 1/2(log(3/2)) <∞

converges

4. We have calculated EY . EY 2 may or may not be fairly difficult to obtain and is a
problem worthy of future research.

As three out of four conditions already hold, there is a good chance that Conjecture 4.1 is
true.
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Chapter 5

Connectivity of G∗n

As shown in [2, 24], for d ≥ 3, it holds that a.a.s. G ∈ Gn,d is d-connected. In particular,
this holds for 4-regular graphs. Proving that graphs in G∗n are not a.a.s. 4-connected
would show that G∗n and Gn(n−1),4 are not contiguous, while proving that they are a.a.s.
4-connected gives another indication that Conjecture 4.1 holds. As we will see, the latter
is the case.

Theorem 5.1. Conditioning on having no double edges, a random graph in G∗n is 4-
connected a.a.s.

Proof. Let n ≥ 3. We will start by proving that deterministically, every graph in G∗n is
2-connected.

Consider two vertices v1 and v2 in a graph G ∈ G∗n, v1 6= v2. Let v1 be in initial cycles
c1 and d1 and let v2 be in initial cycles c2 and d2. We consider several cases:

1. {c1, d1} ∩ {c2, d2} 6= ∅: Without loss of generality, let c1 = c2. In this case, v1 and
v2 are in cycle c1, thus there exist two vertex disjoint paths that connect v1 and v2.

2. {c1, d1} ∩ {c2, d2} = ∅: There exist two vertices u1 and u2 that are the intersections
of initial cycles c1 and c2. Thus, there exist vertex disjoint paths from v1 to u1 (in
c1), to v2 (in c2) and from v1 to u2 (in c1) to v2 (in c2). (See Figure 5.1.)

Thus, by Menger’s theorem (see, e.g. [6]), we have that for any G ∈ G∗n it holds that G is
deterministically 2-connected.

Next, let us assume there is a graph G ∈ G∗n that is not 3-connected. It suffices to find
a graph that has a 2-cut. Denote the vertices in the cut by v1 and v2. G \ {v1, v2} has
at least 2 components. Denote the largest of these components by G′, and all the other
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v1 v2

u1

u2

Figure 5.1: 2-connectivity. The red lines indicate the path chosen.

components together by G′′. Thus |G′| > |G′′|, i.e. |G′| ≥ n(n − 1)/8 − 2 = Θ(n2). This
means that there exist Θ(n) initial cycles at least partially in G′.

Now consider the initial cycles in G′′: Assume there exists an initial cycle c that is
completely in G′′. Clearly, for every cycle c′ at least partially in G′ it holds that c and c′

must have two common vertices. As c is completely in G′′, it must hold that c′ uses the cut
to access c. However, then there are Θ(n) cycles in G′ that must pass through c, while the
cut only has size 2, and each vertex has degree 4. Thus, only two cycles can pass through
the cut, a contradiction.

It follows that there can be no cycle c completely in G′′. How many vertices can be in
G′′? We know that at most two cycles pass through the cut, so without loss of generality,
let cycle 1 and cycle 2 be partially in G′′. As these cycles already share v1 and v2 as
common vertices, they can not intersect in G′′. However, this means that any vertex in G′′

would only be in one cycle, thus have degree 2, contradiction. The same argument holds
if there is only one cycle partially in G′′. Thus, G′′ must be empty, so there can not exist
a cut of size 2. We have shown that G ∈ G∗n is deterministically 3-connected.

Assume now there exists a cut of size 3, on vertices v1, v2, v3, that separates a connected
component G′ from a subgraph G′′ such that G′ is the largest component in the cut. By
the same line of argument as for 2-cuts, there can only be at most three cycles entering
G′′. How big can G′′ become here?

Note first that there cannot be only one cycle entering G′′: any vertex in G′′ would
have degree 2. Next, note that there cannot be only two cycles entering G′′: These cycles
entering must share at least one vertex in {v1, v2, v3}. If there is only one vertex in G′′,
both would contain it, yielding a double edge. If there is more than one vertex in G′′, there
exists a vertex that only one cycle contains, yielding a degree 2 vertex, which is impossible.
See Figures 5.2 for these configurations.

Thus, if such a cut exists, there must be three cycles passing through it. For each vi,
there must be two different cycles passing through it. Note that if there were an edge
between two vertices in {v1, v2, v3}, only two cycles could enter G′′, and so we would be in
the previous case (see Figure 5.2). Thus, without loss of generality, cycles 1, 2 and 3 are
partially in G′′. We can distinguish, and possibly rule out, three different cases:
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v1

v2

v3

G′′

G′

(a) If G′′ has only one vertex, the graph
is forced to have a double edge — impos-
sible.

v1

v2

v3

G′′

G′

(b) If G′′ has two vertices, the graph is forced
to have a vertex of degree two — impossible.

Figure 5.2: Configurations of 3-cuts with two cycles—impossible

1. |G′′| = 1: This would yield double edges, and so we can rule out this case.

2. |G′′| = 2: Let V (G′′) = {u1, u2}. There exists a configuration that is feasible in the
model, namely that, without loss of generality, cycle 1 uses edges v1u1 and u1v2, cycle
2 uses edges v1u2 and u2v3 and cycle three uses edges v2u2, u1u2 and u1v3. See Figure
5.3. This is the only configuration possible without double edges such that u1 and u2

both have degree 4. Note at this point that edge u1u2 is in three triangles, with all
three vertices. From the proof of the short cycle count, we know that this is highly
unlikely. Let us call this configuration case 1. We will consider the calculations for
this case this case below.

3. |G′′| = 3: Denote the vertices in G′′ by u1, u2, u3. Note first that we cannot have
more vertices in G′′. Each pair of cycles has an intersection in the cut, and there can
be only three more vertices in G′′ where the cycles might intersect — if we would
have more vertices, we would have a vertex of degree < 4.

Next, note that each vertex in the cut contributes two half-edges that enter G′′, so
six edges in total. However, every vertex in G′′ must have degree 4, so we need
twelve half edges in total. Because we would be otherwise “missing” six half edges,
all edges between vertices in {u1, u2, u3} must be present. Also, each vi connects to
two different vertices ui, and each pair vi, vj shares exactly one common neighbour.
We consider two sub-cases

• For all i 6= j, each edge uiuj is in a different cycle. Without loss of generality,
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v1

v2

v3

u1

u2

G′′

G′

Figure 5.3: The only possible configuration with |G′′| = 2 and three cycles

let v1u1, u1u2, v2u2 be in cycle 1, v2u1, u1u3, v3u3 in cycle 2 and v1u3, u2u3, u2v3

in cycle 3. (See Figure 5.4a)

v1

v2

v3

u1

u2

u3

G′′

G′

(a) The first possible configuration with |G′′| =
3 and three cycles

v1

v2

v3

u1

u2

u3

G′′

G′

(b) The second possible configuration with
|G′′| = 3 and three cycles

Figure 5.4: The cases where three cycles pass through G′′.

Note here that each edge is in a triangle, so there are two triangles per initial
cycle. Recall from the proof of the short cycle count that this is unlikely. Denote
this as case 2.

• The last case is that two of the edges are completely in G′′, u1u2 and u2u3,
say, are in the same initial cycle. Then, u1u3 is in another initial cycle, and
there is one initial cycle that does not use any of the edges in G′′. Without
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loss of generality, let the sequence of edges v1u1, u1u2, u2u3, u3v2 be in cycle 1,
v2u1, u1u3, u3v3 be in cycle 2, and v1u2, u2v3 be in cycle 3. See Figure 5.4b.
Denote this as case 3.

Just how unlikely is one of these cases to occur? Using the union bound,

P(Case 1 or case 2 or case 3 occurs ) ≤
3∑
i=1

P(Case i occurs).

Consider first case 1: G′′ has two vertices. Let Z1 denote the number of occurrences
of case 1 in a given graph. There are O(n3(2n)3) ways of choosing initial cycles to be
present, and their vertices involved. The probability that the vertices identify as in case 1
is O(n−10), (a factor of n−2 for each vertex identification). Thus, E(Z1) = O(n−4). As for
any non-negative integer random variable X, it holds by the first moment principle that

E(X) =
∞∑
i=1

iP(X = i) ≥ P(X > 0),

we have that
P(case 1 occurs) = O(n−4).

The same line of argument works for case 2 and 3: Now, there are O(n6) ways of choosing
the vertices and the cycles, and the probability for the six vertices to pair up in a manner
that would lead to a 3–cut is O(n−12). Thus, P(case 2 or 3 occurs) = O(n−6).

In sum, it can be said that the probability of a three cut occurring is O(n−4), which
tends to 0 as n → ∞. It follows that, asymptotically almost surely, any graph in G∗n is
4-connected.
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Chapter 6

Conclusions and future work

So far, in this project paper, we have two major results: The distribution of short cycles
in G∗n asymptotically follows a Poisson law (See Chapter 3), and graphs in G∗n are a.a.s
4-connected (Chapter 5). We have also touched upon some open problems in the paper
(Conjecture 4.1). This one seems to be the most important one:

6.1 Contiguity

Showing that G∗n and Gn,4 are contiguous would facilitate the proof of almost all the
other open problems mentioned here; in fact, make them redundant. If G∗n and Gn,4 were
proven to be contiguous, everything that holds for Gn(n−1),4 would also hold for G∗n — see
Subsection 1.4.2. The main hurdle to proove this, however, is to calculate the variance of
lock compositions for a graph G ∈ G∗n. The approach used by Kim and Wormald [17] does
not work with the model formulation we have, as this proof is strongly dependent on the
use of the pairing model. Another approach will have to be found.

6.2 Colourability

We know by Brook’s theorem (see, e.g. [6]) that any graph G ∈ G∗n is 4-colourable.
Considering Conjecture 1.1, it would be of special interest to show that (almost) all graphs
G ∈ G∗n are 3-colourable. Of course, this would follow immediately after having proved
contiguity. (See Theorem 1.5.) After having proved 3-colourability, it might be interesting
to restrict the model to planar graphs, and consider colourability on them.
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6.3 Diameter

As for the diameter of G∗n, it is fairly obvious that for any graph G ∈ G∗n, it holds that

diam G ≤ 2n,

as for any two vertices v1 and v2 it holds that either they are on the same initial cycle
— in which case there exists a path from v1 to v2 that is shorter than 2n−2

2
, or they are

on two different initial cycles, c1 and c2, say, such that there are paths of length ≤ n − 1
connecting v1 and v2 with an intersection of c1 and c2.

We expect that the diameter should be much smaller than this, maybe around log(n).
If we can show that contiguity holds, we immediately get this result (see Theorem 1.4).
Otherwise, it might be possible to show this result using branching processes. (See, e.g.
[14])

6.4 Conclusion

To summarize, in this project paper we started with a brief history of random graphs and
explained the pairing model to describe the uniform d-regular graph model. We motivated
our model with some notes on great circle graphs, and then explained two models, G∗n and
GAn . For G∗n, we showed that the short cycles distribution is asymptotically Poisson; we
presented a conjecture on contiguity to Gn,4, and finally, we showed that a.a.s. all graphs
in G∗n are 4-connected. In this final section, we presented some open problems that give
room for further research.
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