Enumeration Comprehensive Examination Monday, June 24, 9 a.m. - Noon

2002

1. Let $F(t,y,x) = \prod_{j\geq 0} (1 - tyx^j)(1 - tx^j)^{-1}$, and

$$\binom{m+k}{k}_x = \frac{\prod_{i=1}^{m+k} (1-x^i)}{\prod_{i=1}^{m} (1-x^i) \prod_{i=1}^{k} (1-x^i)}.$$

(a) Use Euler's device (a functional equation for F) to prove that

$$F(t, y, x) = 1 + \sum_{k>1} t^k \prod_{i=1}^k (1 - yx^{i-1})(1 - x^i)^{-1}.$$

(b) Deduce from part (a) that

$$\prod_{j=0}^{m} (1 - tx^{j})^{-1} = 1 + \sum_{k \ge 1} t^{k} {m+k \choose k}_{x}.$$

(c) From part (b), give a combinatorial interpretation for

$$[x^n] {m+k \choose k}_x.$$

- 2. Let I_n be the number of permutations of $\{1,\ldots,n\}$ that are involutions (i.e. permutations σ such that $\sigma(\sigma(i))=i$, for $i=1,\ldots,n$). Let $I(x)=\sum_{n\geq 0}I_n\frac{x^n}{n!}$.
- (a) Prove that

$$I(x) = e^{x + \frac{x^2}{2}}.$$

(b) Deduce from part (a) that I_n satisfies the recurrence equation

$$I_n = I_{n-1} + (n-1)I_{n-2}, \ n \ge 2$$

with initial conditions $I_0 = I_1 = 1$.

- (c) Give a direct combinatorial argument to establish the recurrence in part (b).
- 3. A phylogenetic tree (p-tree) on a set X is defined recursively as follows. If $X = \{v\}$ then v itself is the only p-tree on the set $\{v\}$. If T_1 and T_2 are p-trees on disjoint non-empty sets X_1 and X_2 , respectively, then $\{T_1, T_2\}$ is a p-tree on the set $X_1 \cup X_2$. For example, $\{\{a,b\},c\},\{\{a,c\},b\},\{\{b,c\},a\}$ are the 3 p-trees on $\{a,b,c\}$, and $\{\{\{a,d\},c\},\{b,e\}\}$ is a p-tree on the set $\{a,b,c,d,e\}$. For each positive integer $n \geq 1$, determine the number of p-trees on the set $\{1,2,\ldots,n\}$.
- 4. Consider lattice paths on integer points in two dimensions with two types of steps: up by two units, and right by one unit. Let g_n be the number of such paths from (0,0) to (2n,2n) which never go below the line y=x, $n\geq 0$. Let h_n be the number of such paths from (0,0) to (2n,2n) which never go below the line y=x, and which never touch the line y=x except at (0,0) and (2n,2n), $n\geq 1$. Let $G=\sum_{n\geq 0}g_nx^n$ and $H=\sum_{n\geq 1}h_nx^n$.
- (a) Prove that $G = (1 H)^{-1}$ and $H = xG^2$.
- (b) From part (a), determine h_n , $n \ge 1$, and g_n , $n \ge 0$.
- (c) Prove that the number of such paths from (0,0) to (2n,2n) which never go below the line y=x, and which touch the line y=x exactly m+1 times (including at (0,0) and (2n,2n)), is given by

$$\frac{m}{n} \binom{3n-m-1}{n-m}, \qquad n \ge m \ge 1.$$

5. For a finite set V, let $V^* := \bigcup_{k=0}^{\infty} V^k$ denote the set of all finite sequences ("words") of elements of V. Consider a simple graph G = (V, E). Define a relation \sim on V^* as follows: for nonadjacent vertices $a, b \in V$ (so $\{a, b\} \notin E$) and words $\sigma, \rho \in V^*$, we let $\sigma ab\rho \sim \sigma ba\rho$. Let \equiv be the reflexive and

transitive closure of the relation \sim . For each $n \geq 0$, let $w_n(G)$ denote the number of equivalence classes of V^n under the relation \equiv . Finally, consider the ordinary generating function

$$W(G; x) := \sum_{n=0}^{\infty} w_n(G)x^n.$$

(a) For simple graphs G and H, $G \cup H$ is the graph with vertex–set $V(G) \cup V(H)$ and edge–set $E(G) \cup E(H)$. Prove that if G and H are vertex–disjoint, then

$$W(G \cup H; x) = W(G; x)W(H; x).$$

(b) For vertex-disjoint simple graphs G and H, the *join* of G and H is the graph $G \vee H$ with vertex-set $V(G \vee H) := V(G) \cup V(H)$ and edge-set

$$E(G \vee H) := E(G) \cup E(H) \cup \{\{g,h\}: \ g \in V(G) \text{ and } h \in V(H)\}.$$

Derive a formula for $W(G \vee H; x)$ in terms of W(G; x) and W(H; x).