Enumeration Comprehensive

Friday 10th June 2005

Examiners: D. Jackson and D. Wagner

Provide solutions to at least five of the seven questions.

Greater credit will be given to well-reasoned and complete solutions than to fragments or sketches of solutions.

1. A trivalent labelled tree is a tree with vertex-set $\{1, \ldots, n\}$ for some positive integer n in which each vertex has degree either 1 or 3. Show that if n = 2k then the number of trivalent labelled trees with n vertices is

 $\frac{(2k-2)!}{2^{k-1}} \binom{2k}{k-1}.$

- 2. (a) Fix an integer $b \geq 2$. Let \mathcal{A} be the set of integer partitions in which each part occurs at most b-1 times. Let \mathcal{B} be the set of integer partitions in which no part is divisible by b. Show that for every integer n, the number of partitions of n in \mathcal{A} equals the number of partitions of n in \mathcal{B} .
 - (b) In the special case b=2, describe explicitly a weight-preserving bijection between the sets \mathcal{A} and \mathcal{B} in part (a). (A proof of correctness is not required.)
 - (c) Provide a bijection as in part (b) for the general case $b \geq 2$.
- 3. Let $\gamma_k = [t^k] \prod_{i \geq 1} (1 tx_i)^{-1}$ where t, x_1, x_2, \ldots are indeterminates.
 - (a) Let $\phi(\gamma_1, \gamma_2, ...)$ be a formal power series in $\gamma_1, \gamma_2, ...$ Prove that

$$[x_1 \cdots x_n] \phi(\gamma_1, \gamma_2, \ldots) = \left[\frac{x^n}{n!}\right] \phi\left(\frac{x}{1!}, \frac{x^2}{2!}, \ldots\right).$$

(b) Prove that the ordinary generating series for the number of alternating sequences of even length is

$$\left(\sum_{k>0} (-1)^k \gamma_{2k}\right)^{-1},$$

and thence find the generating series for the number of alternating permutations of even length.

1

4. A proper 2-cover of order k of $\{1, \ldots, n\}$ is a set \mathcal{B} of non-empty and pairwise mutually distinct subsets $\mathcal{B}_1, \ldots, \mathcal{B}_k$ of $\{1, \ldots, n\}$ such that each element of $\{1, \ldots, n\}$ appears in exactly two members of \mathcal{B} . Prove that the number a(k, n) of such covers is given by

$$\left[\frac{x^k}{k!}\frac{y^n}{n!}\right]A(x,y)$$

where

$$A(x,y) = e^{-x^2(e^y - 1)/2 - x} \sum_{k,n>0} {k \choose 2}^n \frac{x^k}{k!} \frac{y^n}{n!}.$$

- 5. (a) Let α and x be indeterminates. Find a formal power series f(y) such that $e^{\alpha x} = f(xe^{-x})$.
 - (b) Let β be another indeterminate. From part (a) or otherwise, prove that

$$(\alpha+\beta)(n+\alpha+\beta)^{n-1} = \alpha\beta \sum_{k=0}^{n} \binom{n}{k} (k+\alpha)^{k-1} (n-k+\beta)^{n-k-1}.$$

6. (a) An inversion of a permutation $a_1 a_2 \dots a_n$ is a pair of indices (i, j) such that $1 \leq i < j \leq n$ and $a_i > a_j$. Let inv (σ) denote the number of inversions of the permutation $\sigma \in \mathfrak{S}_n$, and for an indeterminate q define the polynomial

$$[n]!_q := \sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{inv}(\sigma)}.$$

Give a combinatorial proof that for $n \geq 1$,

$$[n]!_a = [n-1]!_a(1+q+q^2+\cdots+q^{n-1}).$$

(b) Let $q = p^c$ be a prime power. Let V be an n-dimensional vector space over the finite field GF(q). Show that the number of ordered bases of V is

$$(q^{n}-1)(q^{n}-q)(q^{n}-q^{2})\cdots(q^{n}-q^{n-1}).$$

(c) Show that the number of k-dimensional subspaces of V is

$$\left[\begin{array}{c} n \\ k \end{array}\right]_{a} := \frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}},$$

with the notation defined in part (a).

7. (a) Let $Z_{\mathfrak{S}_n}(x_1, x_2, \ldots, x_n)$ denote the cycle index polynomial of the symmetric group \mathfrak{S}_n , for each $n \geq 0$. Give a formula for the generating series

$$F(t; x_1, x_2, \ldots) = \sum_{n=0}^{\infty} t^n Z_{\mathfrak{S}_n}(x_1, x_2, \ldots, x_n).$$

(b) Let c_n denote the number of rooted (but unlabelled) trees on n vertices. Using part (a) or otherwise, find an expression giving each c_n in terms of $c_0, c_1, c_2, \ldots, c_{n-1}$.