COMPREHENSIVE EXAM – ENUMERATION July 7, 2008

(Total marks = 100)

1(a) Let $a_{n,k}$ denote the number of compositions of n in which k of the parts are equal to [6] 1, for $n \ge k \ge 0$. Prove that

$$\sum_{n>k>0} a_{n,k} u^k x^n = \frac{1-x}{1-2x-(u-1)x(1-x)}.$$

- (b) From (a), determine μ_n , the average number of parts equal to 1 in compositions of n, [5] for $n \geq 0$.
- (c) Let b_n denote the number of compositions of n in which there are no consecutive 1's among the parts. Prove that

$$\sum_{n>0} b_n x^n = \frac{1-x^2}{1-x-x^2-x^3}.$$

- 2(a) Determine the number of rooted, labelled trees on vertex-set $\{1, \ldots, n\}$, in which the root vertex has degree k.
- (b) Determine the number of rooted, labelled trees on vertex-set $\{1, \ldots, n\}$, in which vertex n is a leaf, and is not the root. [7]
- (c) Determine the number of rooted, labelled trees on vertex-set $\{1, \ldots, n\}$, in which the root vertex is larger (i.e. has larger label) than all of its neighbours.
- 3(a) Let c_n denote the number of lattice paths (with steps (0,1) and (1,0)) from (0,0) to (n,n), which never descend below the line $y=x, n \geq 0$. Define $C(x)=\sum_{n\geq 0}c_nx^n$. Prove that

$$C(x) = 1 + xC(x)^2,$$

and hence determine an explicit formula for c_n , $n \geq 0$.

(b) Prove that the generating series with respect to number of upsteps, for lattice paths from (0,0) to a point on the line y=x+k, which never descend below the line y=x, is given by $x^kC(x)^{k+1}$. From this generating series, give an explicit expression for the number of lattice paths from (0,0) to (n,n+k), which never descend below the line $y=x, n \geq 0$.

(c) Let $d_{n,k}$ be the number of lattice paths from (0,0) to (n,n) with k upsteps below the line y=x and n-k upsteps above the line y=x. Prove that

$$\sum_{n>k>0} d_{n,k} x^{n-k} y^k = \frac{1}{1 - xC(x) - yC(y)}.$$

Deduce from this generating series that $d_{n,k}$ is independent of k (and hence that $d_{n,k} = d_{n,0} = c_n$ for all k).

4(a) Prove the identity

$$\prod_{k=0}^{d} (1 - tq^k)^{-1} = \sum_{n=0}^{\infty} {n+d \choose d}_q t^n,$$

[7]

where $\binom{n+d}{d}_q = \prod_{j=1}^d \frac{1-q^{n+j}}{1-q^j}$.

- (b) Hence or otherwise, prove that $[q^k] \binom{n+d}{d}_q$ is the number of partitions of k with at most [5] d parts and with largest part at most n.
- (c) Define a composition of n into partitions to be a k-tuple $(\lambda_1, \ldots, \lambda_k)$ for any $k \geq 0$, such that $\lambda_i = \lambda_{i1} \geq \cdots \geq \lambda_{id_i} > 0$ is a partition of a positive integer, and $|\lambda_1| + \cdots + |\lambda_k| = n$. The partitions λ_i are called the components of the composition into partitions. (Eg. $(2, 4 \geq 2 \geq 1)$ and $(1 \geq 1 \geq 1, 1, 1, 1 \geq 1, 1)$ are compositions of 9 into partitions, with two components and five components respectively.)

Let a_n be the number of compositions of n into partitions in which an even number of components have an even number of parts.

Let b_n be the number of compositions of n into partitions in which an odd number of components have an even number of parts.

Let c_n be the number of partitions of n with distinct parts.

Prove that $a_n = b_n + c_n$ for each $n \ge 1$.

- 5. Let c_n be the number of $2 \times n$ matrices A (with (i, j)-entry $A_{i,j}$) having the following properties: [10]
 - Each number from $\{1, \ldots, n\}$ appears twice in A.
 - $-A_{1,i} \leq A_{2,i}$ for all j.
 - $-A_{i,j} \le A_{i,j+1}$ for i = 1, 2, j = 1, ..., n-1.

Prove that

$$\sum_{n \ge 0} c_n x^n = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}.$$