COMPREHENSIVE EXAMINATION – ENUMERATION K. Purbhoo and D. Wagner Monday, June 22, 2009, 2:00-5:00.

1. [10 pts.] Let g_n be the number of plane planted trees with n nodes, in which every node has an even number of children. Prove that

$$g_n = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \frac{1}{2k+1} {3k \choose k} & \text{if } n = 2k+1. \end{cases}$$

- 2. For natural numbers n and k, let S(n, k) denote the number of partitions of the set $\{1, 2, ..., n\}$ into k pairwise disjoint nonempty blocks, called a *Stirling number of the second kind*.
- (a) [8 pts.] Prove, bijectively or otherwise, that for $m, n \in \mathbb{N}$,

$$m^n = \sum_{k=0}^n k! S(n,k) \binom{m}{k}.$$

(b) [5 pts.] For a sequence a_0, a_1, a_2, \ldots of real numbers, define another sequence b_0, b_1, b_2, \ldots as follows: for all $j \in \mathbb{N}$,

$$b_j = \sum_{i=0}^j \binom{j}{i} a_i.$$

Prove that for all $i \in \mathbb{N}$,

$$a_i = \sum_{j=0}^{i} (-1)^{i-j} \binom{i}{j} b_j.$$

(c) [4 pts.] Deduce a formula for S(n, k) from parts (a) and (b).

- **3(a)** [8 pts.] Let α and x be indeterminates. Find a formal power series f such that $f(xe^{-x}) = e^{\alpha x}$.
- (b) [11 pts.] Let β be another indeterminate. From part (a) or otherwise, prove that, for $n \in \mathbb{N}$,

$$(\alpha+\beta)(\alpha+\beta+n)^{n-1} = \alpha\beta \sum_{k=0}^{n} \binom{n}{k} (\alpha+k)^{k-1} (\beta+n-k)^{n-k-1}.$$

- 4(a) [8 pts.] Let σ be a permutation of the set $\{1, 2, ..., n\}$ chosen uniformly at random, and let $1 \le k \le n$. What is the probability that the cycle of σ that contains 1 has length exactly k?
- (b) [11 pts.] A phylogeny of order n is a tree in which the leaves are labelled by the set $\{1, 2, ..., n\}$ and each non-leaf vertex has degree three. Let a_n denote the number of (isomorphism classes of) phylogenies of order n. Thus, $a_1 = 1$, $a_2 = 1$, $a_3 = 1$, and $a_4 = 3$. Show that for all $n \ge 3$,

$$a_n = 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n - 5),$$

the product of the first n-2 positive odd integers.

5. [15 pts.] An endofunction on a set X is any function $f: X \to X$. An element $v \in X$ is recurrent for $f: X \to X$ if there is a positive integer $m \geq 1$ for which $f^{[m]}(v) = v$. (Here, $f^{[m]}$ denotes the m-fold composition of f with itself.) For each $1 \leq k \leq n$, derive a formula for the number of endofunctions on an n-element set with exactly k recurrent vertices, and conclude that

$$\sum_{k=1}^{n} \frac{(n-1)!k}{(n-k)!n^k} = 1.$$

6. Consider the formal power series

$$F_m(q,t) = \prod_{j=0}^m \frac{1}{1 - q^j t} = \sum_{n=0}^\infty c_{m,n}(q) t^n.$$

- (a) [8 pts.] State and prove a combinatorial interpretation of $F_m(q,t)$ as an ordinary generating series. State the combinatorial interpretation of $c_{m,n}(q)$.
- (b) [12 pts.] By comparing $F_{m+1}(q,t)$ and $F_m(q,qt)$, or otherwise, obtain a linear recurrence relation for $c_{m,n}(q)$. Solve this recurrence to obtain an explicit formula for $c_{m,n}(q)$ as a polynomial in q.