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1. (a) Let S(n) be the number of partitions of n with distinct parts. Prove that [5]∑
n≥0

S(n)xn =
∏
i≥1

(1 + xi) .

(b) Let Q(n) be the number of partitions of n with only odd parts. Prove that [7]∑
n≥0

Q(n)xn =
∏
i≥1

(1 + xi) .

(c) For k, ` ≥ 2, n ≥ 0, let P (n; k, `) be the number of partions of n in which no [8]
part is divisible by k, and each part occurs with multiplicity at most `−1. For
example, P (n; 2, 2) is the number of partitions of n with distinct, odd parts.
Prove that P (n; k, `) = P (n; `, k).

2. Let m,n ∈ N. Prove that the number of surjective functions from {1, . . . ,m} to [12]
{1, . . . , n} is equal to

n∑
k=0

(−1)n−k
(
n

k

)
km .

3. A plane trivalent tree is a planar embedding of a tree with unlabelled vertices, in
which every vertex has degree 1 or 3. A rooted plane trivalent tree is a plane trivalent
tree with one special edge that is oriented; this edge is called the root and we depict
it with an arrow. We will consider two plane trivalent trees (rooted or otherwise)
to be equivalent if they are isotopic, i.e. if it is possible to continuously deform one
into the other via planar embeddings of underlying graph. For example, the two
rooted plane trivalent trees shown below are not equivalent; however if we forget
which edge is the root, they become equivalent unrooted trees.



(a) Let rn denote the number of rooted plane trivalent trees with n vertices. Let [10]
R(x) =

∑
n≥0 rnx

n. Show that

R(x) = x2(R(x) + 1)2 ,

and hence prove that r2n = 1
n+1

(
2n
n

)
, n ≥ 1.

(b) Let tn denote the number of (unrooted) plane trivalent trees with n vertices. [12]
Prove that ∑

k≥0

tkx
k =

∑
n≥0

1

n+ 1

(
2n

n

)(x2n+2

n+ 2
+
x4n+2

2
+

2x6n+4

3

)
.

4. (a) Let C(m,n; k) denote the number of cycles of length k in the complete bipartite [12]
graph Km,n. Obtain a closed formula for the generating series

∑
m,n,k≥0

C(m,n; k)
xmynzk

m!n!
.

(b) Let Gm,n be the set of all subgraphs of Km,n. If a graph G is chosen uniformly [8]
at random from Gm,n, prove that the expected number of cycles in G is[xmyn

m!n!

]
ex+y

(
1
2

log(1− xy
4

)−1 − xy
8

)
.

5. Let q be a prime power, and n ∈ N. For k ≥ 0, define

[k]!q =
k∏
i=1

(1 + q + · · ·+ qi−1) .

Let V be an n-dimensional vector space over Fq, the field with q-elements.

(a) For 0 ≤ k ≤ n, prove that the number of k-dimensional linear subspaces of V [9]
is equal to (

n

k

)
q

=
[n]!q

[k]!q[n− k]!q
.

(b) A full flag in V is an (n+1)-tuple (F0, F1, . . . , Fn) of linear subspaces of V , [7]
such that

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn

and dim(Fi) = i for i = 0, . . . , n. (Hence F0 is the 0-subspace, and Fn = V .)
Prove that the number of full flags in V is equal to [n]!q.



(c) Let Sn denote the set of permutations of {1, . . . , n}. An inversion of a permu- [10]
tation σ ∈ Sn is a pair (i, j) such that 1 ≤ i < j ≤ n and σ(i) > σ(j). Let
inv(σ) denote the number of inversions of σ.

Let An ⊂ GLn(Fq) be the set of invertible matrices over Fq with the following
two properties:

– In each row the rightmost non-zero entry is equal to 1. The rightmost
non-zero entry in any row is called a pivot.

– Every entry that is below a pivot is also equal to 0. (In particular, there
cannot be two pivots in the same column.)

Establish a bijection between An and the set of full flags in V . Hence, or
otherwise, prove that

[n]!q =
∑
σ∈Sn

qinv(σ) .


