First-Stage PhD Comprehensive Examination

in CONTINUOUS OPTIMIZATION

Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo

MC 4044, Wednesday, May 31, 2017, 1pm – 4pm (3 hours)

Examiners: Levent Tunçel and Henry Wolkowicz

1. Consider linear programming problems in the form

(LP)
$$p^* := \min \quad c^{\top} x$$
$$\text{s.t.} \quad Ax = b$$
$$x \in \mathbb{R}^n_+,$$

where A is a full row rank m-by-n matrix. In your answers, you may use a Strong Duality Theorem for LP, without proof, provided you state it clearly and correctly.

- (a) Derive the dual of LP.
- (b) Show that the feasible set of LP is a polyhedron and define an "extreme point" of a polyhedron.
- (c) Give an example of an LP problem in the dual form of LP that is feasible but does not have an extreme point.
- (d) Suppose that p^* is finite and that there is a strictly feasible solution $(\exists \bar{x} \in \mathbb{R}^n_{++} \text{ such that } A\bar{x} = b)$. Show that the optimal solution set of the dual is a nonempty, compact, convex set.
- (e) Suppose that p^* is finite. Is it possible to find an instance of the above family of LPs where p^* is finite and both the feasible solution set of LP and of its dual are bounded sets? Prove all your claims.

- 2. (a) Let $f: \mathbb{R}^n \to (-\infty, +\infty]$. Define the Fenchel-Legendre conjugate f^* of f.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be the exponential function, i.e., $f(x) := \exp(x)$. Compute the Fenchel-Legendre conjugate of f.
 - (c) Define what it means for $f: \mathbb{R}^n \to (-\infty, +\infty]$ to be a proper, closed convex function.
 - (d) Let $f: \mathbb{R}^n \to (-\infty + \infty]$ be a proper, closed convex function. Then, prove that f has bounded level sets iff f^* is continuous at 0.
- 3. Let $q: \mathbb{R}^n \to \mathbb{R}$,

$$q(x) := \frac{1}{2} x^{\top} Q x - b^{\top} x,$$

be a quadratic function with Q, b appropriate sized given matrices.

(a) Let

$$p^* := \min_{x \in \mathbb{R}^n} q(x).$$

Provide a characterization (with a proof) for $p^* > -\infty$, i.e., for p^* being finite valued.

(b) Consider the quadratic programming problem (QP)

$$min q(x)
s.t. Ax = c
 x \in \mathbb{R}^n,$$

where $c \in \mathbb{R}^m$, m < n, and A is an appropriate matrix. Show that x^* is a local minimizer of QP if, and only if, x^* is a global minimizer of QP.¹

(c) Consider the trust region subproblem

(TRS)
$$p^* := \min_{x \in \mathbb{R}^n} q(x)$$
$$\text{s.t. } ||x||_2 \le \delta$$
$$x \in \mathbb{R}^n,$$

where $\delta > 0$.

- i. Show that p^* is attained.
- ii. Provide a characterization (with a proof) for x^* being a global minimizer of TRS.
- iii. When is the global minimizer of TRS unique? Why?

¹No convexity is assumed.

- 4. (a) Let $f: \mathbb{R}^n \to (-\infty, +\infty]$. Define the notion of f being a *coercive* function. Then let f be a coercive function and prove that every level set of f is bounded.
 - (b) Suppose the n := 1 and f is differentiable and suppose that

$$\lim_{|x| \to \infty} \frac{f(x)}{|x|} = +\infty.$$

Show that

$$\{f'(x):x\in\mathbb{R}\}=\mathbb{R}.$$

- (c) Let $f: \mathbb{R}^n \to (-\infty, +\infty]$, and $\bar{x} \in \mathbb{R}^n$. Define the subdifferential $\partial f(\bar{x})$.
- (d) Let $f: \mathbb{R}^n \to (-\infty, +\infty]$ be given by $f(x) := ||x||_{\infty}$. Compute $\partial f(0)$. Prove all your claims.
- 5. Consider the abstract convex programming problem

(CP)
$$p^* := \min \quad f(x)$$
 s.t. $g(x) \leq_K 0$
$$x \in \Omega,$$

where f is convex on the convex set Ω , and $g:\Omega\to\mathbb{R}^m$ is K-convex with respect to the closed convex cone K.

- (a) State the Slater constraint qualification for CP.
- (b) Suppose that p^* is finite and the Slater condition holds. State the Lagrange multiplier necessary and sufficiency theorem.²
- (c) Suppose that there are Lagrange multiplier vectors λ_0, λ_1 for right-hand side perturbations of CP z_0, z_1 , respectively, with optimal solutions x_0, x_1 , respectively, i.e., for the constraints $g(x) \leq_K z_i$, $i \in \{1, 2\}$, respectively. State and prove a sensitivity analysis theorem, i.e., one that provides bounds for $f(x_0) f(x_1)$.

²There should be separate statements for with and without attainment and for necessity and sufficiency.