Enumeration Comprehensive Examination
Wednesday, June 1st 2016, 1:30pm - 4:30pm
Examiners: K. Purbhoo and D. Wagner

Instructions. Attempt to answer all questions. Greater credit will be given to complete, well-reasoned solutions than to fragmentary or partial solutions. If question X comes before question Y in the exam, then you may (for full credit) use the result of X to in your solution to Y even if you did not solve X ; however, if you use the result of Y in your solution to X , credit will only be given if Y is solved correctly.

1. [8/8 pts.] Define, with justification, a natural class of structures (a.k.a. species)
(a) $\ldots \mathrm{Q}$ with exponential generating function $Q(x)=(1 /(1-x))^{1 /(1-x)}$.
(b) $\ldots \mathcal{R}$ with exponential generating function $R(x)$ satisfying $R(x)=x \cosh (R(x))$. (Recall: $\cosh x=\left(e^{x}+e^{-x}\right) / 2$.)
2. [8/10 pts.] For $k, n \geq 0$, let $d_{n, k}$ denote the number of lattice paths from $(0,0)$ to (n, n) that have at least one point on the line $y=x-k$ but no points strictly below it. (If $k=0$, these are Dyck paths.)
(a) Let $C(x)=\sum_{n \geq 0} d_{n, 0} x^{n}$. Prove that

$$
C(x)=1+x C(x)^{2},
$$

and hence find an explicit formula for $d_{n, 0}$.
(b) Let $D(x, y)=\sum_{n, k \geq 0} d_{n, k} x^{n} y^{k}$. Prove that

$$
D(x, y)=\frac{C(x)}{1-x y C(x)^{2}}
$$

and hence find an explicit formula for $d_{n, k}$.
3. $\left[9 / 9 \mathrm{pts}\right.$.] Let m be a positive integer. For an m-ary string $\alpha \in[m]^{*}$ and $i \in[m]$, let $w_{i}(\alpha)$ denote the number of i 's in α. Write $\mathbf{x}^{\mathbf{w}(\alpha)}=x_{1}^{w_{1}(\alpha)} x_{2}^{w_{2}(\alpha)} \cdots x_{m}^{w_{m}(\alpha)}$.
Let $\Sigma \subset[m]^{2}$ be a set of m-ary strings of length 2 , and let $\bar{\Sigma}=[m]^{2} \backslash \Sigma$ be the complementary set. Let \mathcal{G} (respectively $\overline{\mathcal{G}}$) be the set of all m-ary strings with the property that every substring of length 2 belongs to Σ (respectively $\bar{\Sigma}$). (Note that \mathcal{G} and $\overline{\mathcal{G}}$ both include all m-ary strings of length 0 or 1.) Consider the two generating series $G(\mathbf{x})=\sum_{\alpha \in \mathcal{G}} \mathbf{x}^{\mathbf{w}(\alpha)}, \bar{G}(\mathbf{x})=\sum_{\alpha \in \overline{\mathcal{G}}} \mathbf{x}^{\mathbf{w}(\alpha)}$.
(a) Compute $G(\mathbf{x})$ and $\bar{G}(\mathbf{x})$ in the case where $\Sigma=\{11,22, \ldots, m m\}$.
(b) Prove that $\bar{G}\left(x_{1}, \ldots, x_{m}\right)=G\left(-x_{1}, \ldots,-x_{m}\right)^{-1}$.
4. [10/8 pts.] For a permutation $\sigma \in S_{n}$ and $i \in[n-1]$, we say that i is a descent of σ if $\sigma(i)>\sigma(i+1)$. The set of all descents of σ is denoted $\operatorname{Des}(\sigma)$.
(a) Let $w_{n, k}$ be the number of pairs (σ, α) where $\sigma \in S_{n}$ and α is a k-subset of $\operatorname{Des}(\sigma)$. Prove that

$$
\sum_{n, k \geq 0} w_{n, k} \frac{x^{n} t^{k}}{n!}=\left(1-\frac{e^{x t}-1}{t}\right)^{-1}
$$

(b) Deduce that the number of permutations in S_{n} with exactly k descents is

$$
n!\left[x^{n} t^{k}\right]\left(1-\frac{e^{x(t-1)}-1}{t-1}\right)^{-1} .
$$

5. [10/8/12 pts.] Throughout this problem, X and Y are assumed to be finite sets with $X \cap Y=\emptyset$.

Let $\mathcal{A}(X, Y)$ be the set of permutations $\sigma:(X \cup Y) \rightarrow(X \cup Y)$ with the following two properties:
(I) For all $x \in X$, there exists some $j \geq 1$ such that $\sigma^{j}(x) \in Y$.
(II) For all $y \in Y$, there exists some $j \geq 1$ such that $\sigma^{j}(y) \in X$.

Here σ^{j} denotes the j-th power of σ under composition. In other words, $\mathcal{A}(X, Y)$ is the set of permutations of $X \cup Y$ in which every cycle contains both an element from X and an element from Y. (Example: if $|X|=1,|Y| \geq 1, \mathcal{A}(X, Y)$ consists of all cyclic permutations of $X \cup Y$.)
(a) Let $a_{m, n}=\# \mathcal{A}(X, Y)$, if $|X|=m$ and $|Y|=n$. Prove that

$$
\sum_{m, n \geq 0} a_{m, n} \frac{x^{m} y^{n}}{m!n!}=\frac{(1-x)(1-y)}{1-x-y}
$$

and hence $a_{m, n}=m n(m+n-2)$! for $m+n \geq 1$.
(b) Let $p_{m, n}$ denote the number of permutations in $\mathcal{A}(X, Y)$ that have an even number of cycles, if $|X|=m$ and $|Y|=n$, and let $q_{m, n}$ denote the number that have an odd number of cycles. (Example: if $m=1, n \geq 1$, we have $p_{m, n}=0$ and $q_{m, n}=a_{m, n}$, since every permutation in $\mathcal{A}(X, Y)$ has exactly one cycle.) Prove that for $m, n \geq 1$,

$$
q_{m, n}-p_{m, n}=m!n!.
$$

(c) Let $\mathcal{B}(X, Y)$ be the set of all functions $\sigma:(X \cup Y) \rightarrow(X \cup Y)$ (not just the permutations!) that have properties (I) and (II). Let $b_{m, n}=\# \mathcal{B}(X, Y)$, if $|X|=m$ and $|Y|=n$. Prove that for $m+n \geq 1$,

$$
b_{m, n}=m n(m+n)^{m+n-2} .
$$

