C&O — CONTINUOUS OPTIMIZATION COMPREHENSIVE EXAM — Summer 2016

Monday, June 13, 2016, 1:30-4:30PM

Examiners: Stephen Vavasis and Henry Wolkowicz

Contents

1	Linear Programming and Complementarity	1
2	Convex Functions	2
3	Second Order Cone	2
4	Optimality Conditions	3
5	Duality and Supporting Hyperplanes	3
6	Constrained Optimization	4

1 Linear Programming and Complementarity

Let $A \in \mathbb{R}^{m \times n}$ be a given matrix, and $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$ given vectors. Let (P), (D) stand for the following pair of primal-dual linear programming problems:

m	in \mathbf{c}^T	x		max	$\mathbf{b}^T \mathbf{y}$
(P) s	.t. A x	$\mathbf{x} = \mathbf{b},$	(D)	s.t.	$A^T \mathbf{y} + \mathbf{s} = \mathbf{c},$
	$\mathbf{x} \ge$	≥ 0 .			$\mathbf{s} \ge 0.$

Recall that we say that a pair of feasible points $(\mathbf{x}, (\mathbf{y}, \mathbf{s}))$ is complementary if $\mathbf{x}^T \mathbf{s} = \mathbf{0}$.

- 1. State a theorem that relates complementarity to optimality.
- 2. A pair of feasible points is said to be *strictly complementary* if for each i = 1, ..., n, $x_i s_i = 0$ and $x_i + s_i > 0$. Argue that if $(\mathbf{x}^*, (\mathbf{y}^*, \mathbf{s}^*))$ is a feasible strictly complementary solution, then for any optimizer $\hat{\mathbf{x}}$ of the primal, $\operatorname{supp}(\hat{\mathbf{x}}) \subset \operatorname{supp}(\mathbf{x}^*)$. Here, " $\operatorname{supp}(\mathbf{x})$ " denotes the indices (i.e., a subset of $\{1, ..., n\}$) of nonzero entries of \mathbf{x} . [Hint: $\hat{\mathbf{x}}$ must also be complementary with $(\mathbf{y}^*, \mathbf{s}^*)$.]
- 3. Say that $B \cup N$ (both B, N are subsets of $\{1, \ldots, n\}$) is a strict complementarity partition of $\{1, \ldots, n\}$ for the above LP if there is a strictly complementary solution

such that $\operatorname{supp}(\mathbf{x}^*) = B$ while $\operatorname{supp}(\mathbf{s}^*) = N$. Show that the strict complementarity partition is uniquely determined by the LP, i.e., it cannot have two distinct strict complementarity partitions.

2 Convex Functions

Say that a convex function $f : \mathbb{R}^n \to \mathbb{R}$ is strongly convex with modulus $\mu > 0$ if the function $g(\mathbf{x}) \equiv f(\mathbf{x}) - \frac{\mu}{2} \|\mathbf{x}\|^2$ is convex.

1. Show that an equivalent definition is: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\lambda \in [0, 1]$,

$$f((1-\lambda)\mathbf{x}+\lambda\mathbf{y}) \le (1-\lambda)f(\mathbf{x}) + \lambda f(\mathbf{y}) - \frac{1}{2}\mu\lambda(1-\lambda)\|\mathbf{x}-\mathbf{y}\|^2.$$

[Hint: write $\|(1-\lambda)\mathbf{x} + \lambda \mathbf{y}\|^2$ in terms of λ and $\|\mathbf{x}\|^2$, $\|\mathbf{y}\|^2$ and $\|\mathbf{x} - \mathbf{y}\|^2$.]

2. Suppose also that f is differentiable. Show that strong convexity implies that

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T (\mathbf{x} - \mathbf{y}) \ge \mu \|\mathbf{x} - \mathbf{y}\|^2,$$

for all \mathbf{x}, \mathbf{y} .

3. Consider the function $f(\mathbf{x}) = ||A\mathbf{x} - \mathbf{b}||^2$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Suppose that rank (A) = n. Show that f is strongly convex.

3 Second Order Cone

The second-order cone C_2^n is defined to be

$$C_2^n = \left\{ \mathbf{x} \in \mathbb{R}^n : x_1 \ge \sqrt{x_2^2 + \dots + x_n^2} \right\}$$

Second-order cone programming (SOCP) in standard form means minimizing $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b}, \mathbf{x} \in C_2^{n_1} \times \cdots \times C_2^{n_r}$, where \mathbf{c} is a given *n*-vector, A is a given $m \times n$ matrix, \mathbf{b} is a given *m*-vector, and $n_1 + \cdots + n_r = n$ so that the containment makes sense.

- 1. Show that the second-order cone is a convex set.
- 2. Define the following function Φ that maps \mathbb{R}^n (vectors) into S^n ($n \times n$ symmetric matrices):

$$\Phi(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ x_2 & x_1 & & \\ \vdots & & \ddots & \\ x_n & & & x_1 \end{bmatrix}.$$

Entries of $\Phi(\mathbf{x})$ outside the main diagonal and first row and column are zeros.

Show that $\mathbf{x} \in C_2^n \iff \Phi(\mathbf{x}) \succeq 0$. [Hint: One possible approach is to consider products of the form $\mathbf{v}^T \Phi(\mathbf{x}) \mathbf{v}$; use a carefully chosen \mathbf{v} for one direction and the Cauchy-Schwarz inequality for the other. Another possible approach is to use a characterization of positive definiteness in terms of Cholesky factorization applied to a reordering of $\Phi(\mathbf{x})$.]

3. The result of Item 2 is usually cited to justify the statement that: second-order cone programming is a special case of semidefinite programming. Explain.

4 Optimality Conditions

For this question, assume that $f, g_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m$, are convex differentiable functions and that $\bar{x} \in \Omega \subseteq \mathbb{R}^n$; Ω a convex set.

- 1. (a) Define the tangent cone of Ω at \bar{x} , and denote it by $T_{\Omega}(\bar{x})$. [Hint: You can take advantage of the convexity of Ω .]
 - (b) Define the nonnegative polar of a convex cone K and denote it by K^* .
- 2. State and prove a *characterization of optimality* for

$$\bar{x} \in \operatorname*{argmin}_{x \in \Omega} f(x).$$

(The necessity part for general functions f and general sets Ω is sometimes called the Rockafellar-Pshnenichnyi condition.)

3. Consider the following constrained convex optimization problem with $\Omega = \mathbb{R}^n$.

(CP)
$$\min_{x} f(x) \\ \text{s.t.} g_i(x) \le 0, \quad i = 1, \dots, m.$$

- (a) State the Lagrangian function $L(x, \lambda)$ for the constrained problem (CP).
- (b) Define the linearizing cone for the constraints in (CP) at a feasible point \bar{x} . Find and prove the relationship between this linearizing cone and the tangent cone of the feasible set, i.e., a subset condition.
- (c) State the Karush-Kuhn-Tucker optimality conditions and prove it under a *weakest* constraint qualification obtained from the cone conditions in Item 3b, i.e., that the subset condition holds with equality.

5 Duality and Supporting Hyperplanes

Let the f, g_i and set Ω be as above in Section 4. Consider the above constrained convex program (CP) with the additional set constraint

(CPS)
$$\min_{x} f(x)$$

s.t. $g_i(x) \le 0, \quad i = 1, \dots, m$
 $x \in \Omega.$

- 1. State the Slater condition first for (CP) and then for (CPS).
- 2. State the Lagrangian dual of (CPS). Prove that weak duality holds.
- 3. Consider the convex program

(CPSS)
$$\begin{array}{l} \min_{x} \quad f(x) := e^{-\sqrt{x_{1}x_{2}}} \\ \text{s.t.} \quad x_{1} = 0, \\ x \in \Omega := \mathbb{R}^{2}_{+}. \end{array}$$

Here f is defined as $+\infty$ outside of Ω .

- (a) Derive the Lagrangian dual of (CPSS).
- (b) Find the optimal primal and dual values. Explain your results.

6 Constrained Optimization

Let

$$f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^m, h: \mathbb{R}^n \to \mathbb{R}^p$$

be differentiable functions. Consider the general constrained nonlinear program

(NLP)
$$\begin{array}{c} \min_{x} & f(x) \\ \text{s.t.} & g(x) \leq 0 \\ & h(x) = 0 \end{array}$$

- 1. State the Mangasarian-Fromovitz constraint qualification for (NLP) at a feasible point \bar{x} .
- 2. State the appropriate KKT conditions under a constraint qualification at a feasible point \bar{x} .
- 3. Consider the above (NLP) with <u>only</u> equality constraints h(x) = 0. (There are no inequality constraints.)
 - (a) Construct an augmented Lagrangian for the nonlinear program (NLP).
 - (b) Relate an **unconstrained** stationary point of the augmented Lagrangian to the original nonlinear program.
 - (c) Give one step of the augmented Lagrangian algorithm, or any other algorithm that utilizes the augmented Lagrangian formulation.