C&O — CONTINUOUS OPTIMIZATION COMPREHENSIVE EXAM — Summer 2009

MC 2018A, Monday, June 8, 2009, 9:00am – noon (3 hours) Examiners: Levent Tunçel and Stephen A. Vavasis

1. Consider the optimization problem

$$\inf\{\mathbf{x}^T Q \mathbf{x} + 2\mathbf{c}^T \mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$$

for given vectors **b** in \mathbb{R}^m **c** $\in \mathbb{R}^n$ and a given matrices $A \in \mathbb{R}^{m \times n}$ with rank(A) = m, $Q \in \mathbb{R}^{n \times n}$ with Q symmetric positive definite.

- (a) Prove that the problem has a unique optimal solution.
- (b) Find the (Lagrangian) dual problem and solve the dual problem. Using the dual optimal solution, find the primal optimal solution.
- (c) Find the duals of the following problems

$$\inf\{\mathbf{x}^T Q \mathbf{x} + 2\mathbf{c}^T \mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\},\$$

and

$$\inf\{\mathbf{x}^T Q \mathbf{x} + 2\mathbf{c}^T \mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathbb{R}^n_+\}.$$

- 2. (a) Let $C \subset \mathbb{R}^n$ be a nonempty closed convex set and suppose $\hat{\mathbf{x}} \in \mathbb{R}^n \setminus C$. State and prove the separating hyperplane theorem for this situation.
 - (b) Consider the set C and point $\hat{\mathbf{x}}$ as in part (a). Prove that the infimum of the distances from $\hat{\mathbf{x}}$ to a point in C is equal to the supremum of the distances from $\hat{\mathbf{x}}$ to a hyperplane separating $\hat{\mathbf{x}}$ from C.
 - (c) For $K \subseteq \mathbb{R}^n$, define

$$K^* := \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{y} \ge 0, \forall \mathbf{x} \in K \}.$$

Suppose $K \neq \emptyset$. Prove or disprove: "K is a closed convex cone iff $K = (K^*)^*$."

- 3. (a) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Explain what is meant by a stationary (or critical) point of f and what is meant by a local minimizer.
 - (b) State conditions in terms of the first and second derivatives of f that are necessary for $\mathbf{x}^* \in \mathbb{R}^n$ to be a local minimizer. State conditions that are sufficient for local minimality.
 - (c) It is possible in principle for the steepest descent method to converge to a stationary point that fails to satisfy the second-order necessary condition, but this almost never happens in practice. The following analysis explains why. Consider minimizing $\mathbf{x}^T D \mathbf{x}$, where D is an $n \times n$ diagonal matrix whose diagonal entries are of mixed signs. Argue that the steepest descent method initiated at a point $\mathbf{x}^0 \neq \mathbf{0}$ will not converge to the stationary point at $\mathbf{x}^* = \mathbf{0}$ except under special circumstances. [Assume that either an exact line search or an inexact line search satisfying the Wolfe conditions is used. Hint: argue that either steepest descent will take an unbounded step or else that certain coordinate entries of \mathbf{x} will grow in magnitude instead of shrinking.]

- 4. Consider applying Newton's method with a line search $\mathbf{x}^{k+1} = \mathbf{x}^k \alpha^k (\nabla^2 f(\mathbf{x}^k))^{-1} \nabla f(\mathbf{x}^k)$ to minimize a function $f(\mathbf{x})$. In order to achieve asymptotic quadratic convergence, it is necessary for α^k to converge to 1. Determine how fast α^k must converge to 1 (as a function of $\|\mathbf{x}^k \mathbf{x}^*\|$) in order to ensure quadratic convergence. An informal Taylor series analysis is acceptable, and you may make all necessary assumptions that usually pertain to Newton's method.
- 5. Let $S \subseteq \mathbb{R}^n$ an open set, $f: \mathbb{R}^n \to \mathbb{R}, \ g: \mathbb{R}^n \to \mathbb{R}^p, \ h: \mathbb{R}^n \to \mathbb{R}^q$ be given. Consider

(P)
$$\begin{array}{c} \inf & f(\mathbf{x}) \\ \text{subject to:} & g(\mathbf{x}) \leq \mathbf{0} \\ & h(\mathbf{x}) = \mathbf{0} \\ & \mathbf{x} \in S. \end{array}$$

- (a) State the Karush-Kuhn-Tucker (KKT) theorem for (P) (including all the necessary assumptions on f, g and h).
- (b) Let $\mathbf{e} \in \mathbb{R}^n$ denote the vector of all ones, and $A \in \mathbb{R}^{m \times n}$ with $A\mathbf{e} = \mathbf{0}$ be given. Consider the following optimization problem:

$$(P_0) \quad \text{inf} \quad -\ln\left(\prod_{j=1}^n x_j\right)$$

$$e^T \mathbf{x} = n$$

$$\mathbf{x} \in \mathbb{R}_{++}^n.$$

Prove that (P_0) has a unique optimal solution.

- (c) State the strongest version of KKT Theorem you can for (P_0) .
- (d) What is the unique optimal solution of (P_0) ? Prove your claim using the KKT theorem from part (c).
- 6. (a) Let $D \subseteq \mathbb{R}^n$ be nonempty, open and convex, and $F: D \to \mathbb{R}$ be given such that F is twice continuously differentiable on D and $F(\mathbf{x}) > 0$, $\forall \mathbf{x} \in D$. Define $f: D \to \mathbb{R}$ by

$$f(\mathbf{x}) := \ln \left(F(\mathbf{x}) \right).$$

Prove that F is convex on D iff the matrix

$$\nabla^2 f(\mathbf{x}) + \nabla f(\mathbf{x}) \left[\nabla f(\mathbf{x}) \right]^T$$

is positive semidefinite for every $\mathbf{x} \in D$.

(b) For $\mathbf{u} \in \mathbb{R}^n$, let $U := \text{Diag}(\mathbf{u}) \in \mathbb{R}^{n \times n}$. Prove that for every $\mathbf{u} \in \mathbb{R}^n$,

$$nU^2 - \mathbf{u}\mathbf{u}^T$$
 is positive semidefinite.

(c) Let $\mathbf{c} \in \mathbb{R}^n_{++}$, $n \geq 3$. Define

$$F(\mathbf{x}) := \begin{cases} \frac{(\mathbf{c}^T \mathbf{x})^{n+1}}{\prod\limits_{j=1}^n x_j} & \text{if } \mathbf{x} \in \mathbb{R}^n_{++}, \\ +\infty & \text{otherwise.} \end{cases}$$

Prove that F is convex on \mathbb{R}^n . (Hint: It is clear that part (a) is useful here. Part (b) can also be useful; but it may not be as easy to see how...)