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1. Assume that f: R" — R is a twice continuously differentiable function of x.

(a) Show that Vf(X) = 0 is a necessary but not sufficient condition for X to be a
local minimizer of f.

(b) Define condition (1) at a point x:
Vf(x) =0, V2f(x) is positive semidefinite. (1)

Prove or disprove: (1) is necessary and sufficient for X to be a local minimizer of
f.

(c) Let F : R® — R" be a vector-valued function where component i of F is Fj :
R" — R, F; is continuously differentiable i« = 1,...,n. Let f(x) = |F(x)||3.
Prove or disprove: If x satisfies V f(X) = 0 then either X is a global minimizer of
f or the Jacobian of F at x is singular.

2. Let F : R™ — R" be a vector-valued function where component 7 of F is F; : R* — R,
F; is twice continuously differentiable, : = 1,... n.

(a) What is Newton’s method for the problem: solve F(x) = 07 What is the compu-
tational cost of Newton’s method?

(b) One popular approach to avoiding the expense of computing the Jacobian of F
at each iteration is to use the rank-one secant (or Broyden) update to a current
nonsingular Jacobian approximation B.:
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B+ = Bc + 9 (2)
where s is the step to the new point x, from the current point x., s = x; — x,,
and y is the difference in the function values, y = F(x;) —F(x). Derive (2) using
an optimization argument and the quasi-Newton condition: Bys =y. Why is (2)
not often used in the case F : R® — R™, m > n?



3. Consider solving the nonlinear equality-constrained problem
min{f(x) : ¢(x) = 0}, (3)

where f : R® — R is twice continuously differentiable, and ¢ : R* — R™, m < n,
and each component function ¢; : R" — R is twice continuously differentiable. One
approach to (3) is to minimize the penalty function
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with respect to x for a selection of positive values of u, usually decreasing to zero.

(a) For a fixed value of u, what is the gradient and Hessian of (4) with respect to x7

(b) Show that as u — 0, V2 _p(x, 1) approaches singularity. Why does this (appar-
ently) pose a problem?

(c) Suggest a possible way to overcome the asymptotic ill-conditioning problem indi-
cated by (b) but without abandoning the use of the penalty function (4).

(d) Indicate why a descent direction algorithm for (4) may require many steps to
converge to a minimizer of (4) if starting from a point X where ¢(x) = 0 and p is
small (X is not necesssarily close to a local minimizer of (4)).

(e) Suppose (4) is replaced with

p(x, 1) = F(x) + ;ﬂnc(x)nl (5)

as an approach to solve (3). What is an advantage of using (5) over (4)? Disadvan-
tage? If (3) has a (feasible) global minimizer, is (5) bounded below for sufficiently
small but finite u? Explain.

4. Consider the optimization problem of
min || Ax — bl[3 + [|x]|:, (6)

where A is a given m X n matrix whose rank is m, i.e., its rows are linearly independent,
and ||x||; as usual stands for |z{|+ -« + |z,].

(a) This problem may be rewritten as

min [[Ax —Db|i+yi + - + Y,
subject to ¥; > x;, i=1,...n, (7)

Demonstrate the equivalence between (6) and (7).

(b) Both problems (6) and (7) are convex optimization problems. Explain why.

(c) Write down the Lagrangian function, the dual function, and the dual optimization
problem for the reformulation (7). Be sure to include constraints in the dual
optimization problem to eliminate the possibility that the dual objective function
takes on negative infinite values over its feasible region.

2



5. Consider again the optimization problem (6) and its reformulation (7).

(a) For (6), write down a condition for x* to be a global optimizer in terms of the
subdifferential of the objective function. Determine the subdifferential.

(b) For (7), write down the KKT conditions for x* to be a global optimizer.

(¢) Tt is no surprise that there is a close relationship between the conditions in (a)
and (b). Determine that relationship.

6. Consider the problem of minimizing ||x — X¢l||2 subject to x € C, where %, is a given
point in R™ and C' C R" is a nonempty closed convex bounded set.

(a) This problem has a unique solution. Why? [Hint: use compactness for existence
and convexity for uniqueness.]

(b) Show that the hypothesis that C' is bounded can be dropped, and the theorem is
still true.

(¢) Show via counterexamples that the hypothesis that C' is closed and the hypothesis
that C' is convex are both necessary (cannot be dropped).



