Department of Combinatorics and Optimization CONTINUOUS OPTIMIZATION COMPREHENSIVE July 2001: 3 hours

Examiners: Mike Best and Henry Wolkowicz

Instructions: Answer as many questions as you can. Complete answers are preferred over fragmented ones. Questions have equal value.

1. Consider the LP

$$\min\{c'x\mid a_i'x\leq b_i,\ i=1,\ldots,m\},\$$

where c and a_1, \ldots, a_m are n-vectors.

- (a) State the Karush-Kuhn-Tucker conditions for this problem.
- (b) Give a constructive proof that these conditions are necessary for optimality provided the gradients of those constraints active at an optimal solution are linearly independent.
- (c) Show geometrically what problems can occur when the linear independence assumption is not satisfied.

2. Given any $m \times n$ matrix A, consider the optimization problem

$$\alpha = \sup\{x^T A y : ||x||^2 = 1, ||y||^2 = 1\}$$
 (1)

and the matrix

$$\tilde{A} = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}.$$

- (a) If μ is an eigenvalue of \tilde{A} , prove $-\mu$ is also.
- (b) If μ is a nonzero eigenvalue of \tilde{A} , use a corresponding eigenvector to construct a feasible solution to problem (1) with objective value μ .
- (c) Deduce $\alpha \geq \lambda_{max}(\tilde{A})$ (the largest eigenvalue).
- (d) Use the Karush-Kuhn-Tucker theorem to prove any optimal solution of problem (1) corresponds to an eigenvector of \tilde{A} . (State carefully the: theorem, assumptions, constraint qualifications, that you use, i.e. justify the use of the theorem.)
- (e) Deduce $\alpha = \lambda_{max}(\tilde{A})$. (This number is called the *largest singular* value of A.)

3. Consider the convex program

(CP)
$$\min_{\text{subject to } g(x) \le 0,} f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are differentiable and convex functions on \mathbb{R}^n .

- (a) State Slater's constraint qualification (CQ) for (CP).
- (b) Suppose that Slater's CQ holds and that

$$x(\alpha) = \arg\min_{x} \{f(x) - \alpha \sum_{j=1}^{n} \log(-g_j(x)) \mid g(x) < 0\}$$

for $\alpha > 0$. What should α satisfy in order that

$$f(x(\alpha)) - \inf_{x} \{f(x) \mid g(x) \le 0\} \le 10^{-6}$$

Prove your claim.

(Hint: Recall that the primal-dual interior-point approach for convex programming is similar to that for linear programming.)

- 4. Let f be a convex function from \Re^n to \Re . Suppose that for each nonzero y in \Re^n there exists some positive η such that $f(\eta y) > f(0)$.
 - (a) Prove that the set

$$L(1) = \{ x \in \Re^n \mid f(x) \le 1 \}$$

is compact.

(b) Can you draw any conclusion about the compactness of

$$L(n) = \{ x \in \Re^n \mid f(x) \le n \},\$$

where n is an arbitrarily large natural number? Explain.

5. Let f be a convex differentiable function of n variables, let A be an (m,n) matrix and b an m-vector. Consider the problem

$$\min\{f(x) \mid Ax \le b\}. \tag{2}$$

Let x^* be optimal for (2). Consider the following solution algorithm for (2). Let x_0 be an arbitrary feasible point for (2) and let y_0 be optimal for the LP

$$\min\{\nabla f(x_0)'y\mid Ay\leq b\}. \tag{3}$$

Let

$$\sigma_0 = \arg\min\{f(x_0 + \sigma(y_0 - x_0)) \mid 0 \le \sigma \le 1\}.$$

Set $x_1 = x_0 + \sigma_0(y_0 - x_0)$. Replace x_0 with x_1 and repeat.

- (a) Sketch the progress of this algorithm.
- (b) Would this algorithm be computationally efficient? Why?
- (c) Verify the bound

$$f(x^*) \ge f(x_0) + \nabla f(x_0)'(y_0 - x_0).$$

- 6. (a) Prove that any local minimum of a convex set is also a global minimum. Do *not* make any differentiability assumptions,
 - (b) i. State the two term Taylor's series for a twice differentiable function f(x) (x is an n-vector) about a point x_0 .
 - ii. By taking gradients of both sides of this Taylor's series, can one conclude that

$$\nabla f(x) = \nabla f(x_0) + H(\xi)(x - x_0),$$

where ξ lies on the line segment joining x and x_0 ?

7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function on \mathbb{R}^n and let x_1, x_2, \ldots, x_k be k points in \mathbb{R}^n such that for some $u \in \mathbb{R}^k$:

$$\sum_{i=1}^k u_i \nabla f(x_i) = 0, \quad \sum_{i=1}^k u_i = 1, \quad u \ge 0.$$

Derive a lower bound for $\inf_{x \in \mathbb{R}^n} f(x)$ in terms of x_1, x_2, \dots, x_k and u.

