First-Stage PhD Comprehensive Examination

in CONTINUOUS OPTIMIZATION

Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo

MC 6486, Monday, June 16, 2014, 1:00p.m. - 4p.m. (3 hours)

Examiners: T. Coleman and L. Tunçel

1. (a) Let $C \subseteq \mathbb{R}^{n}$ be a nonempty, closed convex set and let $p(C, u)$ denote the closest point to $u \in \mathbb{R}^{n}$, in C (with respect to the Euclidean norm). Based on the above definition, set up a convex optimization problem whose unique solution is $p(C, u)$. Then utilizing a suitable theorem (characterizing minimizers of a convex function over a convex set), prove that for every $u \in \mathbb{R}^{n} \backslash C$,

$$
[u-p(C, u)]^{\top}[x-p(C, u)] \leq 0, \forall x \in C .
$$

(b) Let $C \subseteq \mathbb{R}^{n}$ be a nonempty, closed convex set and $p(C, u)$ be as above. Prove that for every $u, v \in \mathbb{R}^{n}$,

$$
\|p(C, u)-p(C, v)\|_{2} \leq\|u-v\|_{2} .
$$

(c) Let $C \subset \mathbb{R}^{n}$ be a nonempty, compact convex set. Considering (and utilizing) the farthest point problem (the problem of finding a point in C with maximum distance from the origin), prove that C has at least one extreme point.
2. (a) State the Farkas' Lemma for the system

$$
\text { (I) } \quad A x=b, x \geq 0,
$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
(b) Using the statement from part (a), prove that for every triple (A, B, c), with $A \in$ $\mathbb{R}^{p \times n}, B \in \mathbb{R}^{q \times n}, c \in \mathbb{R}^{n}$, exactly one of the following systems has a solution:
(I) $\exists d \in \mathbb{R}^{n}$ such that $A d \leq 0, B d=0, c^{\top} d>0$;
(II) $\quad \exists \lambda \in \mathbb{R}_{+}^{p}, \mu \in \mathbb{R}^{q}$ such that $A^{\top} \lambda+B^{\top} \mu=c$.
(c) State the Hyperplane Separation Theorem for a closed convex set S in \mathbb{R}^{n} and a point $u \in \mathbb{R}^{n} \backslash S$.
(d) Using the statement in part (c), re-prove the statement in part (b).
3. (a) Given $f: \mathbb{R}^{n} \rightarrow[-\infty,+\infty]$, define what is meant by the Legendre-Fenchel conjugate f^{*} of function f.
(b) Compute the Legendre-Fenchel conjugate of $\lambda_{\max }(X)$, where X is an n-by- n symmetric matrix with real entries, and $\lambda_{\max }$ denotes the largest eigenvalue function. Prove all your claims.
(c) Compute the subdifferential of $\lambda_{\max }(X)$. Prove all your claims.
(d) Compute the Legendre-Fenchel conjugate of

$$
-\ln (\operatorname{det}(X)): \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}
$$

where \mathbb{S}_{++}^{n} denotes the cone of n-by- n symmetric positive definite matrices, with real entries.
(e) Compute the Lagrangian dual of the following problem

$$
(P) \quad \inf \left\{\operatorname{Tr}(C X): \mathcal{A}(X)=b, X \in \mathbb{S}_{+}^{n}\right\}
$$

where $C \in \mathbb{S}^{n}, \mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}, b \in \mathbb{R}^{m}$ are given, \mathbb{S}^{n} denotes the space of n-by- n symmetric matrices with real entries, \mathbb{S}_{+}^{n} denotes the set of positive semidefinite matrices in $\mathbb{S}^{n}, \operatorname{Tr}(X)$ is the trace of the matrix X.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ be given. Consider

$$
\begin{aligned}
\text { inf } & f(x) \\
(P) \quad \text { subject to: } & g(x) \leq 0 \\
& h(x)=0
\end{aligned}
$$

(a) State the Karush-Kuhn-Tucker (KKT) theorem for (P) (including all the necessary assumptions on f, g and h).
(b) Recall that \mathbb{S}^{n} denotes the space of n-by- n symmetric matrices with real entries and \mathbb{S}_{++}^{n} denotes the set of positive definite matrices in \mathbb{S}^{n}. Given $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ a linear transformation satisfying $\mathcal{A}(I)=0$, consider the following optimization problem:

$$
\begin{align*}
\inf & -\ln (\operatorname{det}(X)) \\
\text { subject to: } & \mathcal{A}(X)=0 \tag{0}\\
& \operatorname{Tr}(X)=n \\
& X \in \mathbb{S}_{++}^{n}
\end{align*}
$$

(c) Prove that $\left(P_{0}\right)$ has a unique optimal solution.
(d) State the strongest version of KKT Theorem you can for $\left(P_{0}\right)$.
(e) What is the unique optimal solution of $\left(P_{0}\right)$? Prove your claim using the KKT theorem from part (d).
5. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuously differentiable system. Assume $B \in \mathbb{R}^{n \times n}$ is the current approximation to the Jacobian matrix (the matrix of first derivatives) and we move $x \rightarrow x^{+}$. The Broyden update to B is $B^{+}=B+E$, where E solves

$$
\begin{equation*}
\min _{E}\left\{\|E\|_{F}: E s=y\right\} \tag{1}
\end{equation*}
$$

and $s=x^{+}-x, y=F\left(x^{+}\right)-F(x)$. (Note: The Frobenius norm of any matrix M is denoted $\|M\|_{F}=\sqrt{\sum_{i, j} m_{i j}^{2}}$.)
(a) Why is (1) a sensible way to define an update to the Jacobian approximation?
(b) The solution to (1) is

$$
E=\frac{y s^{\top}}{s^{\top} s} .
$$

Use an optimization argument to derive this solution to (1).
(c) Suppose S is a set of index pairs such that if $(i, j) \in S$ then element (i, j) of the Jacobian is a known constant value. Show how to modify the Broyden update to incorporate this information in this case. Hint: Problem (1) can be solved in a row-by-row fashion.
6. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice continuously differentiable function. The trust region subproblem, defined at point x, is:

$$
\begin{equation*}
\min _{s}\left\{q(s) \triangleq s^{\top} g+\frac{1}{2} s^{\top} H s:\|s\|_{2} \leq \Delta\right\} \tag{2}
\end{equation*}
$$

where $g=\nabla f(x), H=\nabla^{2} f(x), \Delta>0$. The solution to (2), s_{*}, is a trial step and is accepted, i.e., $x^{+} \leftarrow x+s_{*}$, where s_{*} solves (2) if and only if $f\left(x+s_{*}\right)<f(x)$. The parameter Δ is adjusted for the next iteration depending on the value of ratio $=\left[f\left(x+s_{*}\right)-f(x)\right] / q\left(s_{*}\right)$.
(a) True or False: Assuming x does not satisfy $2^{\text {nd }}$-order necessary conditions to be a local minimizer of f, trial step $s_{*}(\Delta)$ is accepted for Δ sufficiently small. Explain.
(b) True or False: If $\nabla f(x)=0$ then $s_{*}=0$. Explain.
(c) True or False: If matrix H has a negative eigenvalue, then $\left\|s_{*}(\Delta)\right\|_{2}=\Delta$. Explain.
(d) True or False: If H is positive definite and $\Delta>\left\|H^{-1} g\right\|_{2}$ then $\left\|s_{*}(\Delta)\right\|_{2}<\Delta$. Explain.
(e) True or False: If $f\left(x+s_{*}\right)>f(x)$ and $q\left(s_{*}\right) \neq 0$ then ratio <0. Explain.

