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1. (a) Let C ⊆ Rn be a nonempty, closed convex set and let p(C, u) denote the closest
point to u ∈ Rn, in C (with respect to the Euclidean norm). Based on the above
definition, set up a convex optimization problem whose unique solution is p(C, u).
Then utilizing a suitable theorem (characterizing minimizers of a convex function
over a convex set), prove that for every u ∈ Rn \ C,

[u− p(C, u)]> [x− p(C, u)] ≤ 0,∀x ∈ C.

(b) Let C ⊆ Rn be a nonempty, closed convex set and p(C, u) be as above. Prove
that for every u, v ∈ Rn,

‖p(C, u)− p(C, v)‖2 ≤ ‖u− v‖2.

(c) Let C ⊂ Rn be a nonempty, compact convex set. Considering (and utilizing)
the farthest point problem (the problem of finding a point in C with maximum
distance from the origin), prove that C has at least one extreme point.

2. (a) State the Farkas’ Lemma for the system

(I) Ax = b, x ≥ 0,

where A ∈ Rm×n and b ∈ Rm.

(b) Using the statement from part (a), prove that for every triple (A,B, c),with A ∈
Rp×n, B ∈ Rq×n, c ∈ Rn, exactly one of the following systems has a solution:

(I) ∃d ∈ Rn such that Ad ≤ 0, Bd = 0, c>d > 0;

(II) ∃λ ∈ Rp
+, µ ∈ Rq such that A>λ+B>µ = c.

(c) State the Hyperplane Separation Theorem for a closed convex set S in Rn and a
point u ∈ Rn \ S.

(d) Using the statement in part (c), re-prove the statement in part (b).
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3. (a) Given f : Rn → [−∞,+∞], define what is meant by the Legendre-Fenchel conju-
gate f ∗ of function f .

(b) Compute the Legendre-Fenchel conjugate of λmax(X), where X is an n-by-n sym-
metric matrix with real entries, and λmax denotes the largest eigenvalue function.
Prove all your claims.

(c) Compute the subdifferential of λmax(X). Prove all your claims.

(d) Compute the Legendre-Fenchel conjugate of

− ln(det(X)) : Sn
++ → R,

where Sn
++ denotes the cone of n-by-n symmetric positive definite matrices, with

real entries.

(e) Compute the Lagrangian dual of the following problem

(P ) inf
{

Tr(CX) : A(X) = b,X ∈ Sn
+

}
,

where C ∈ Sn, A : Sn → Rm, b ∈ Rm are given, Sn denotes the space of n-by-n
symmetric matrices with real entries, Sn

+ denotes the set of positive semidefinite
matrices in Sn, Tr(X) is the trace of the matrix X.

4. Let f : Rn → R, g : Rn → Rp, h : Rn → Rq be given. Consider

(P )
inf f(x)

subject to: g(x) ≤ 0
h(x) = 0.

(a) State the Karush-Kuhn-Tucker (KKT) theorem for (P ) (including all the neces-
sary assumptions on f , g and h).

(b) Recall that Sn denotes the space of n-by-n symmetric matrices with real entries
and Sn

++ denotes the set of positive definite matrices in Sn. Given A : Sn → Rm

a linear transformation satisfying A(I) = 0, consider the following optimization
problem:

(P0)

inf − ln (det(X))
subject to: A(X) = 0

Tr(X) = n
X ∈ Sn

++.

(c) Prove that (P0) has a unique optimal solution.

(d) State the strongest version of KKT Theorem you can for (P0).

(e) What is the unique optimal solution of (P0)? Prove your claim using the KKT
theorem from part (d).
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5. Let F : Rn → Rn be a continuously differentiable system. Assume B ∈ Rn×n is the
current approximation to the Jacobian matrix (the matrix of first derivatives) and we
move x→ x+. The Broyden update to B is B+ = B + E, where E solves

min
E
{‖E‖F : Es = y} (1)

and s = x+ − x, y = F (x+) − F (x). (Note: The Frobenius norm of any matrix M is

denoted ‖M‖F =
√∑

i,j m
2
ij.)

(a) Why is (1) a sensible way to define an update to the Jacobian approximation?

(b) The solution to (1) is

E =
ys>

s>s
.

Use an optimization argument to derive this solution to (1).

(c) Suppose S is a set of index pairs such that if (i, j) ∈ S then element (i, j) of the
Jacobian is a known constant value. Show how to modify the Broyden update to
incorporate this information in this case. Hint: Problem (1) can be solved in a
row-by-row fashion.

6. Assume f : Rn → R is a twice continuously differentiable function. The trust region
subproblem, defined at point x, is:

min
s

{
q(s) , s>g +

1

2
s>Hs : ‖s‖2 ≤ ∆

}
, (2)

where g = ∇f(x), H = ∇2f(x), ∆ > 0. The solution to (2), s∗, is a trial step and is
accepted, i.e., x+ ← x + s∗, where s∗ solves (2) if and only if f(x + s∗) < f(x). The
parameter ∆ is adjusted for the next iteration depending on the value of
ratio = [f(x+ s∗)− f(x)] /q(s∗).

(a) True or False: Assuming x does not satisfy 2nd-order necessary conditions to be a
local minimizer of f , trial step s∗(∆) is accepted for ∆ sufficiently small. Explain.

(b) True or False: If ∇f(x) = 0 then s∗ = 0. Explain.

(c) True or False: If matrix H has a negative eigenvalue, then ‖s∗(∆)‖2 = ∆. Explain.

(d) True or False: If H is positive definite and ∆ > ‖H−1g‖2 then ‖s∗(∆)‖2 < ∆.
Explain.

(e) True or False: If f(x+ s∗) > f(x) and q(s∗) 6= 0 then ratio < 0. Explain.
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