First-Stage PhD Comprehensive Examination in CONTINUOUS OPTIMIZATION

Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo

MC 6486, Monday, June 16, 2014, 1:00p.m. – 4p.m. (3 hours)

Examiners: T. Coleman and L. Tunçel

1. (a) Let $C \subseteq \mathbb{R}^n$ be a nonempty, closed convex set and let p(C, u) denote the closest point to $u \in \mathbb{R}^n$, in C (with respect to the Euclidean norm). Based on the above definition, set up a convex optimization problem whose unique solution is p(C, u). Then utilizing a suitable theorem (characterizing minimizers of a convex function over a convex set), prove that for every $u \in \mathbb{R}^n \setminus C$,

$$\left[u - p(C, u)\right]^{\perp} \left[x - p(C, u)\right] \le 0, \forall x \in C.$$

(b) Let $C \subseteq \mathbb{R}^n$ be a nonempty, closed convex set and p(C, u) be as above. Prove that for every $u, v \in \mathbb{R}^n$,

$$\|p(C, u) - p(C, v)\|_2 \le \|u - v\|_2.$$

- (c) Let $C \subset \mathbb{R}^n$ be a nonempty, compact convex set. Considering (and utilizing) the *farthest point problem* (the problem of finding a point in C with maximum distance from the origin), prove that C has at least one extreme point.
- 2. (a) State the Farkas' Lemma for the system

$$(I) \qquad Ax = b, x \ge 0,$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

(b) Using the statement from part (a), prove that for every triple (A, B, c), with $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{q \times n}$, $c \in \mathbb{R}^{n}$, exactly one of the following systems has a solution:

(I) $\exists d \in \mathbb{R}^n$ such that $Ad \leq 0, Bd = 0, c^\top d > 0;$ (II) $\exists \lambda \in \mathbb{R}^p_+, \mu \in \mathbb{R}^q$ such that $A^\top \lambda + B^\top \mu = c.$

- (c) State the Hyperplane Separation Theorem for a closed convex set S in \mathbb{R}^n and a point $u \in \mathbb{R}^n \setminus S$.
- (d) Using the statement in part (c), re-prove the statement in part (b).

- 3. (a) Given $f : \mathbb{R}^n \to [-\infty, +\infty]$, define what is meant by the Legendre-Fenchel conjugate f^* of function f.
 - (b) Compute the Legendre-Fenchel conjugate of $\lambda_{\max}(X)$, where X is an *n*-by-*n* symmetric matrix with real entries, and λ_{\max} denotes the largest eigenvalue function. Prove all your claims.
 - (c) Compute the subdifferential of $\lambda_{\max}(X)$. Prove all your claims.
 - (d) Compute the Legendre-Fenchel conjugate of

$$-\ln(\det(X)): \mathbb{S}^n_{++} \to \mathbb{R},$$

where \mathbb{S}_{++}^n denotes the cone of *n*-by-*n* symmetric positive definite matrices, with real entries.

(e) Compute the Lagrangian dual of the following problem

(P) inf
$$\{\operatorname{Tr}(CX) : \mathcal{A}(X) = b, X \in \mathbb{S}^n_+\},\$$

where $C \in \mathbb{S}^n$, $\mathcal{A} : \mathbb{S}^n \to \mathbb{R}^m$, $b \in \mathbb{R}^m$ are given, \mathbb{S}^n denotes the space of *n*-by-*n* symmetric matrices with real entries, \mathbb{S}^n_+ denotes the set of positive semidefinite matrices in \mathbb{S}^n , $\operatorname{Tr}(X)$ is the trace of the matrix X.

4. Let $f : \mathbb{R}^n \to \mathbb{R}, g : \mathbb{R}^n \to \mathbb{R}^p, h : \mathbb{R}^n \to \mathbb{R}^q$ be given. Consider

(P) subject to:
$$f(x)$$

 $h(x) = 0$

- (a) State the Karush-Kuhn-Tucker (KKT) theorem for (P) (including all the necessary assumptions on f, g and h).
- (b) Recall that \mathbb{S}^n denotes the space of *n*-by-*n* symmetric matrices with real entries and \mathbb{S}^n_{++} denotes the set of positive definite matrices in \mathbb{S}^n . Given $\mathcal{A} : \mathbb{S}^n \to \mathbb{R}^m$ a linear transformation satisfying $\mathcal{A}(I) = 0$, consider the following optimization problem:

$$(P_0) \quad \begin{array}{c} \inf & -\ln \left(\det(X) \right) \\ \text{subject to:} \quad \mathcal{A}(X) = 0 \\ & \operatorname{Tr}(X) = n \\ & X \in \mathbb{S}^n_{++}. \end{array}$$

- (c) Prove that (P_0) has a unique optimal solution.
- (d) State the strongest version of KKT Theorem you can for (P_0) .
- (e) What is the unique optimal solution of (P_0) ? Prove your claim using the KKT theorem from part (d).

5. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable system. Assume $B \in \mathbb{R}^{n \times n}$ is the current approximation to the Jacobian matrix (the matrix of first derivatives) and we move $x \to x^+$. The Broyden update to B is $B^+ = B + E$, where E solves

$$\min_{E} \{ \|E\|_{F} : Es = y \}$$
(1)

and $s = x^+ - x$, $y = F(x^+) - F(x)$. (Note: The Frobenius norm of any matrix M is denoted $\|M\|_F = \sqrt{\sum_{i,j} m_{ij}^2}$.)

- (a) Why is (1) a sensible way to define an update to the Jacobian approximation?
- (b) The solution to (1) is

$$E = \frac{ys^{\top}}{s^{\top}s}$$

Use an optimization argument to derive this solution to (1).

- (c) Suppose S is a set of index pairs such that if $(i, j) \in S$ then element (i, j) of the Jacobian is a known constant value. Show how to modify the Broyden update to incorporate this information in this case. **Hint:** Problem (1) can be solved in a row-by-row fashion.
- 6. Assume $f : \mathbb{R}^n \to \mathbb{R}$ is a twice continuously differentiable function. The trust region subproblem, defined at point x, is:

$$\min_{s} \left\{ q(s) \triangleq s^{\top}g + \frac{1}{2}s^{\top}Hs : \|s\|_{2} \le \Delta \right\},\tag{2}$$

where $g = \nabla f(x)$, $H = \nabla^2 f(x)$, $\Delta > 0$. The solution to (2), s_* , is a trial step and is accepted, i.e., $x^+ \leftarrow x + s_*$, where s_* solves (2) if and only if $f(x + s_*) < f(x)$. The parameter Δ is adjusted for the next iteration depending on the value of $ratio = [f(x + s_*) - f(x)]/q(s_*)$.

- (a) True or False: Assuming x does not satisfy 2^{nd} -order necessary conditions to be a local minimizer of f, trial step $s_*(\Delta)$ is accepted for Δ sufficiently small. Explain.
- (b) True or False: If $\nabla f(x) = 0$ then $s_* = 0$. Explain.
- (c) True or False: If matrix H has a negative eigenvalue, then $||s_*(\Delta)||_2 = \Delta$. Explain.
- (d) True or False: If H is positive definite and $\Delta > ||H^{-1}g||_2$ then $||s_*(\Delta)||_2 < \Delta$. Explain.
- (e) True or False: If $f(x + s_*) > f(x)$ and $q(s_*) \neq 0$ then ratio < 0. Explain.