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Abstract

In this paper we present some interesting mathematical results on card shuffling
for two types of shuffling: the famous riffle shuffle and the random-to-top shuffle. A
natural question is how long it takes for a deck to be randomized under a particular
shuffling technique. Mathematically, this is the mixing time of a Markov chain. In
this paper we present these results for both the riffle shuffle and the random-to-top
shuffle. For the same two shuffles, we also include natural results for card shuffling
which directly relate to well-known combinatorial objects such as Bell numbers and
Young tableaux.
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1 Introduction

Humans have been shuffling decks of cards since playing cards were first invented in 1000AD
in Eastern Asia [25]. It is unclear when exactly card shuffling theory was first studied, but
since card shuffling theory began with magicians’ card tricks, it is fair to think that it was
around the time that magicians were studying card tricks. The earliest known publication
of card tricks was from 1726 in a book titled “Whole Art and Mystery of Modern Gaming”
[10]. This is also the first known documentation of a “perfect shuffle”: a shuffle where the
deck is split equally in half and the cards are exactly interleaved.

One of the most common shuffling techniques is the overhand shuffle. To perform such a
shuffle, one begins by holding the entire deck in one’s left hand, then, using one’s right hand,
grabs a small pack of cards from the back of the deck using their thumb and fingers and
inserting them at the front of the deck. The packets that are inserted at the front of the deck
however are not released in the same order as they were grabbed; the shuffler will usually
only drop one or two cards at a time from their right hand until the entire pack has been
released. In 1989, Robin Permantle showed that the mixing time of the overhand shuffle
with respect to variation distance is between order n2 and order n2 log n [21]. In 2006, Johan
Jonasson showed, with the help of Wilson [29], that the mixing time of the overhand shuf-
fle is indeed n2 log n. For a standard deck of 52 cards, that is well over four thousand shuffles.

The faro shuffle is a technique which was derived from the gambling card game “Faro”
which was played in the late 17th century [24]. To perform a faro shuffle, one splits the deck
in half, preferably equally. Holding each half in either hand, the cards are pushed together
from the corners, forcing them to interleave in between each other. There is no requirement
for the cards to be perfectly interleaved, however some believe that this is necessary for a
faro shuffle. A faro shuffle which leaves the original top card on the top and the original
bottom card on the bottom of the shuffled deck is called an out-shuffle. Similarly, a shuffle
which leaves the original top card as the second card and the original bottom card second
last is called an in-shuffle. Since the faro shuffle is a controlled shuffle, there is no mix-
ing time. However, many results have been proven regarding in and out shuffles. Scottish
magician Alex Elmsley derived a method which moves the original top card to any desired
position in the deck. The idea is to express the card’s new position in binary, and perform
an in-shuffle for every 1 and an out-shuffle for every 0 from left to right [18]. In 1983, Persi
Diaconis, Ronald Graham and William Kantor showed, using number theoretical results,
that the order of a perfect in-shuffle and out-shuffle is 2 mod (2n± 1), respectively. In and
out-shuffles also appear in computer science as a way of connecting processors in parallel
processing machines [10].

The top-to-random shuffle is performed by removing the top card of the deck and in-
serting it back in the deck at random. This shuffle was first studied in the 1980s by Persi
Diaconis and David Aldous [1], who showed that the mixing time is O(n log n). Later, in
1992, Diaconis, Fill and Pitman [8] gave a proof for the mixing time of a more general version
called the top-m-to-random shuffle, where the first m cards are removed from the top and
placed randomly in the deck one by one. The mixing time of this shuffle is n

m
log n + c [8].
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In 2016, Amy Pang [20] showed that a particular Markov chain modeling a scenario named
“The relative time on a to-do list”, consequently models the distribution of a deck under
the top-to-random shuffle. Pang also describes a descent operator on a Hopf algebra that
corresponds to the top-to-random shuffle [20]. The random-to-top shuffle is the inverse of
top-to-random shuffle, and therefore, what results are valid for the top-to-random are also
valid for the random-to-top, however they may have a slightly different proof.

The riffle shuffle was first studied by academics in the 1920’s at Bell Laboratories. To
perform a single riffle shuffle on a deck of cards, we first divide the deck into two parts.
This is called a cut. Then, interleave the two parts together in any way such that each part
remains in it’s relative order in the deck. In 1992, Dr. Diaconis and Dr. David Bayer pub-
lished their famous work “Trailing the Dovetail Shuffle to it’s Lair”, which gives a rigorous
proof of the number of riffle shuffles it takes to randomize a deck of cards.

This paper will show that card shuffling is actually remarkably complicated mathemat-
ically. In particular, this paper analyzes two different shuffling techniques: the riffle shuffle
and the random-to-top shuffle. We include the result of the natural question: how many shuf-
fles it takes to randomize a deck of cards, as well as a few other card shuffling results which
are directly related to well-known combinatorial objects and other unexpected mathematical
phenomena such as the sequence of numbers which results from carrying over columns while
adding large numbers by hand.

2 What is Card Shuffling, Really?

In plain English, card shuffling is defined as the act of mixing up the order of cards in a
pack. Mathematically, card shuffling has more than one definition.

2.1 Shuffles are Bijective Functions

A permutation is a bijection from a finite set to itself, defined as follows. Consider a finite
set of n objects, labeled 1 to n. A permutation σ defined on the set {1, . . . , n} takes, as input,
an ordering of the elements in the set {1, . . . , n} and rearranges the order in a particular
manner. It is important to emphasize that a permutation is applied to a particular ordering,
and is not an ordering itself. In this paper, we write all permutations in cycle notation.

When applying a permutation to a set, the resulting ordering is written as a product of
the original ordering and the permutation. In this paper, we will always multiply permuta-
tions on the left-hand-side. Let σ = (15)(2)(3)(4) = (15), and suppose we apply σ to the
ordering 12345. Then, we would write: σ12345 = (15)12345 = 52341.

Since permutations are functions, the composition of two permutations σ and τ is also
a permutation, which we will denote by τσ. Since we will be multiplying permutations on
the left, we apply them from right-to-left. For example, suppose σ is the permutation de-
scribed above and τ is the permutation (1523)(4). The composition τσ applied to 12345 is
obtained by first applying σ to 12345 to obtain 52341, then applying τ to 52341 to obtain

3



23145. Henceforth, we refer to a composition of permutations as a product of permutations.
Observe that we can also multiply τσ first to obtain (1523)(4) · (15) = (123)(4)(5) = α and
then write α12345 = 23145.

Mathematically speaking, shuffling a deck of cards is equivalent to applying a permutation
to an ordering of the deck. Moreover, repeatedly shuffling a deck is equivalent to applying a
product of permutations to an ordering of the deck.

The Group of “Shuffles”: Sn

The symmetric group defined on a set of n elements, denoted by Sn, consists of all bijective
functions from the set to itself. Since each element in Sn is a function, the group operation
is function composition. In this paper, we only consider Sn defined on a finite set of objects,
therefore, the elements of Sn are all permutation operations which can be applied to a set of
size n.

Since we can think of a single permutation as a single shuffle, then we can think of the
group Sn as the group of all possible ways that we can shuffle a deck of cards, thus we can
think of the group Sn as the foundation of the mathematical analysis of card shuffling.

It can also be thought of as a probability density on Sn [16]. When applied to an ordering,
no two permutations give the same rearrangement. Therefore, each permutation in Sn can be
thought of as a different way of rearranging the deck. Therefore, each permutation will have
a particular probability of occurring, where the sum of the probabilities of all permutations
is one.

2.2 Random Walks and Markov Chains

A random walk is a random process describing the path of an object through a succession
of random steps on some mathematical space (for example the set of integers). In this paper
we are only concerned about random walks defined on finite sets. In general, a random walk
on a finite set is defined as follows:

Let G be a finite group. Let Q be a probability measure on G, where Q(g) is the probabil-
ity that g ∈ G is chosen. The set of probabilities {Q(g) : g ∈ G} is a probability distribution
on G where Q(g) ≥ 0 and

∑
Q(g) = 1. Let ξ1, ξ2, . . . , ξn be G-valued random elements. We

can think of ξi as the ith step in the walk, where ξi takes on a value of some element in G.
We define the following products:

X0 = identity

X1 = ξ1
...

Xk = ξkXk−1 = ξkξk−1 . . . ξ1
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The random variable Xi is the position of a randomly-moving object after i steps (with
step distribution Q) and is what we call a random walk in the set G. For example, consider
the random variable X2, which is the position of a randomly-moving object after two steps.
Suppose X2 = g. The probability distribution of X2 is given by the sum of Q(h)Q(j) for all
h, j such that g = j ◦ h. This particular operation on Q is called convolution and we write
Q ∗Q = Q∗2, therefore:

P (X2 = g) = Q ∗Q(g) = Q∗2(G) =
∑
h∈G

Q(h)Q(gh−1)

where ∗ is the convolution operation. In general, for Xk the probability distribution is given
by a series of convolutions Q ∗Q ∗Q ∗ · · · ∗Q = Q∗k:

Q∗k = Q∗Q∗k−1 =
∑
h∈G

Q(h)Q(k−1)(gh−1)

In 1906, Andrey Markov [17] proved that repeated convolutions converge to the uniform
distribution U . That is,

Q∗k(g)→ U(g) = 1/|G| as k →∞ (1)

A random walk on a deck of n cards

We can model a sequence of shuffles as a random walk on the group Sn. Each step ξi is a
randomly chosen permutation π ∈ Sn, Xi is the state of the deck after i shuffles, and Q∗i(π)
is the probability that the state after i shuffles is π.

A card shuffling random walk is, in fact, a Markov chain since the probability that the
next step is g ∈ G is only dependent on the current state. In particular, Markov chains which
model repeated card shuffles are irreducible and aperiodic, since it is possible to go from any
state to any other state, and, no state g requires a particular number of steps to return
to state g. Most often, for card shuffling Markov chains, X0 is the identity permutation
with probability 1, and the transition probabilities are given by Q (as defined above). It
is also important to note that most card shuffling Markov chains are regular. That is,
P (Xt = g) ≥ 0 for all times t and all g ∈ G. Therefore, the transition matrix for these types
of Markov chains will always have positive entries.

2.3 What is Randomness?

One of the most important questions when studying the mixing time of a particular shuffle
is what does it mean for a deck to be randomized? Intuitively, for a deck to be randomized,
every configuration of the deck should be equally likely, but, it turns out most card shuffling
techniques do not produce complete randomness in this sense [16]. Therefore, when studying
randomness of a card shuffling technique, it is a matter of how close to random it can become
and how long this takes.
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Markov chains are commonly used to model repeated card shuffling [1] [7]. Moreover,
since card shuffling Markov chains are aperiodic and irreducible, they have a limiting sta-
tionary distribution, which is unique regardless of the initial density (density of X0). For
most card shuffling methods the limiting stationary distribution is the uniform distribution
UG = 1

n!
[7]. Knowing how long the chain takes to reach a stationary distribution is very

important, but depending on which method is used to measure how “close to stationary”
the chain gets, different results are obtained.

One method that is commonly used to measure this is called total variation distance. For
card shuffling, the total variation distance is defined as

||P − U || = max
A⊂G
|P (A)− U(A)| = 1

2

∑
g∈G

|P (g)− U(g)|

where G is the set of all possible permutations on a deck of size n, U is the limiting sta-
tionary distribution (denoted by U since it is usually the uniform distribution on G) and
P is the probability distribution on G for that particular shuffle. By definition, ||P − U ||
will always be between 0 and 1, therefore when ||P − U || is small, we say that the chain is
close to stationary and when ||P −U || is closer to 1, we say that it is far from stationary. It
is important to note that total variation distance can still be used to measure the random-
ness of card shuffling techniques without using Markov chains. For instance, in Bayer and
Diaconis’ famous work [3], they model a sequence of riffle shuffles using what they call an ab-
shuffle (see Theorem 3.3 below), and still use total variation distance to measure randomness.

Another way to measure the distance between probability measures is separation distance
and the l∞ metric. For card shuffling these measures are defined as

sep(m) = |G|max
g
{U(g)− P (g)} l∞(m) = max

g

∣∣∣∣1− P (g)

U(g)

∣∣∣∣
The separation distance is an upper bound on the variation distance [1]. Note that separation
distance can also be written as

sep(m) = max
g

1− P (g)

U(g)

Markov chains modelling natural processes, such as a sequence of card shuffles, show
a sharp cutoff in their long term behaviour [7]. The “cut-off phenomenon” occurs when
||Q1 − Q2|| stays close to its maximum value 1, and then suddenly drops to smaller and
smaller values exponentially fast. For card shuffling Markov chains, the cut-off is what is
used to determine the number of shuffles required to randomize the deck.

2.4 There are even shuffle algebras ?

An alphabet A is a set of elements which are called letters. A letter, in mathematical terms,
is a symbol, whether it is a number or a letter from what the general public knows as the
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alphabet. In this paper we will only be concerned with finite alphabets.

A word over an alphabet A is a sequence of letters from A. We denote a word as a
concatenated product of letters in a sequence. For example: a1a2a3 . . . am where ai ∈ A.
The length of a word is the number of letters it contains, and is denoted by |w|. From any
alphabet we can obtain the empty word ε which contains no letters, and hence |ε| = 0.

A shuffle algebra is defined over the set of all words over a particular alphabet, along
with an operation defined on words which we call the shuffle product. Let w1 and w2 be two
words from the same alphabet. We denote the shuffle product of w1 and w2 by w1 � w2.
The shuffle product between two words w1 = a1a2 . . . an and w2 = b1b2 . . . bm is the sum of
all permutations of a1, a2, . . . , an, b1, b2, . . . bm such that a1, a2, . . . , an and b1, b2, . . . , bm stay
in their relative order. For example, let A be an alphabet and suppose w1 = ab and w2 = 12
are words over A. Then, we have

w1� w1 = ab12 + a1b2 + a12b+ 1a2b+ 12ab+ 1ab2

The shuffle product is, in fact, commutative and associative, which can be defined induc-
tively by:

• w� ε = ε� w = w

• ua� vb = (u� vb)a+ (ua� v)b

where u and v are both words and a and b are letters [15].

In relation to cards, since words are sequences, they could also represent a sequence of
cards in a deck. We can define an alphabet D to be a deck of cards, and thus the shuffle
product between two words over D is exactly the sum of the possible ways of riffling them
together.

3 The Riffle Shuffle

The first mathematical model of the riffle shuffle was developed by Bell Laboratories’ math-
ematicians Edgar Gilbert and Claude Shannon in the 1950s. Shannon showed in some of his
earlier work that if n cards are riffled together (2-shuffled) m times with m ≤ log2 n, then
all arrangements with 2m rising sequences have the same probability [3]. In 1955, Bell Lab-
oratories mathematicians abandoned their research with thoughts that there were too many
ways to rearrange the deck [14]. Many years later, in 1981, Bell Labs scientist Jim Reeds
independently came up with the same model as Gilbert and Shannon in an unpublished
manuscript [22] which he later shared with Persi Diaconis [14]. Today, we call this model
the Gilbert-Shannon-Reeds (GSR) model: cut the deck into two piles: one with c cards and
the other with n− c with probability

(
n
c

)
/2n. Drop the cards from each pile such that: if the

left pile has A cards and the right pile has B cards, then the probability that the next card
is dropped from the left pile is A/(A+B) and the probability that the next card is dropped
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from the right pile is B/(B + A). [9]

Consider the following example of a riffle shuffle on a deck of eight cards labeled 12345678.
Assuming that the deck begins with the cards in the order 12345678, suppose the deck is
cut into two parts: 123 and 45678. When interleaving these two parts, they must stay in the
same order relative to the other cards in their original part. Consider one possible way these
two parts can be interleaved: 14526378. Observe that the cards in the first part remain in
the same relative order, namely 123 and the cards in the second part also remain in their
relative order, namely, 45678.

3.1 The Mixing Time

The mixing time of the Riffle shuffle is one of the most famous results regarding card shuf-
fling. In 1986, Aldous and Diaconis [1] showed that 2 log2 n riffle shuffles are required to
thoroughly mix a deck of n cards. Using a slightly different analysis, in 1992, Bayer and
Diaconis [3] gave a slightly better bound 3

2
log2 n. Shortly after the work by Bayer and Dia-

conis [3] was published, an article in the New York Times [14] was published regarding their
surprising result that only 7 riffle shuffles suffices to shuffle a deck of 52 cards. In this section,
we explain the proof of the mixing time of the riffle shuffle given by Bayer and Diaconis in [3].

To begin we must first determine the probability of a particular ordering of a deck occur-
ring under the riffle shuffle. To do this, we determine the probability of any cut occurring
followed by any interleaving. The probability of a cut occurring after the first k cards is(
n
k

)
/2n. The probability of a particular interleaving is 1/

(
n
k

)
. Therefore, the probability of

any cut followed by any interleaving is(
n

k

)
/2n · 1/

(
n

k

)
= 1/2n

Observe that this probability density is not dependent on k, which means that every
combination of cut and interleaving is equally likely to occur.

Diaconis and Bayer [3] measure randomness using variation distance. As mentioned in
section 2.3, variation distance has two definitions. The definition used in [3] is;

||Rm − U || = max
A⊂Sn

|Rn(A)− U(A)| (2)

where Rm is the GSR probability distribution after m shuffles, U is the uniform density on
Sn and U(A) =

∑
π∈A U(π). Observe that U(π) = 1/n! for all π ∈ Sn.

A rising sequence is a maximal consecutively increasing subset of a larger set [16]. No
two rising sequences in an ordering of a set intersect. Therefore, each ordering of a deck of
cards is uniquely the disjoint union of its rising sequences [3].

A permutation π has a descent at card k ∈ {1, . . . , n − 1} if π(k) > π(k + 1). For ex-
ample, consider the permutation π(12345)= 51324. There are two descents in this ordering,
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namely, at card 5 and at card 3. Typically, we would say the positions at which the descents
occur in a permutation and not the card at which it occurs. Thus, for the example above,
we would say that π has descents at positions 1 and 3. We can also class permutations by
their descents: two permutations π and σ in Sn belong to the same class if π(123...n) has
descents in the same positions as σ(123...n).

It is important to observe that the number of rising sequences and the number of descents
are closely related. Consider the following corollary:

Corollary 3.1. : A permutation π has r rising sequences if and only if π−1 has r−1 descents

Proof. [3] Consider an arbitrary permutation π. Observe that the kth entry of π determines
the position of the letter k in π−1. It follows that the kth entry of π is a descent in π whenever
the letter i+ 1 begins a new rising sequences in π.

Using the example above, consider π−1 = 24351. Since 5 is in the first position in π, then
there will be a rising sequence in π−1 beginning from the letter 2, namely (2,3)

An a-shuffle is a probability density on Sn defined as follows: Let a ∈ N. Cut the deck
into a sets with non-negative sizes p1, p2, . . . , pa, where p1+p2+ · · ·+pa = n. Now, interleave
the cards such that each set stays in their relative order. The probability of an a-shuffle is
1/an (see section 6 in [16]), therefore, an a-shuffle is also a uniform distribution on Sn.

Theorem 3.2. [3]: The probability that an a-shuffle will result in a permutation π is(
a+ n− r

n

)
/an (3)

or equivalently, (
a+ n− d− 1

n

)
/an

where d is the number of descents in π−1

Note that summing (3) over all permutations π gives 1 [3]. The number of permutations π
with exactly r rising sequences is the Eulerian number An,r, where n is the number of cards
in the deck. Since the number of a-shuffles that result in the permutation π with r rising
sequences is

(
a+n−r
n

)
, and there are An,r permutations with r rising sequences, then we have

that

n∑
r=1

An,r

(
a+ n− r

n

)
= an (4)

where an is the number of possible a-shuffles for an n-card deck. It is important to note
that Eulerian numbers are symmetric. That is, An,r = An,n−r−1 (this can be proven using
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an inductive argument on r).

In order to prove the mixing time of the riffle shuffle, we first need a way of representing
repeated riffle shuffles. Diaconis and Bayer [3] represent repeated riffle shuffles as repeated
2-shuffles (a-shuffles for a = 2), and from there, determine Rm.

Theorem 3.3. [3]: An a-shuffle followed by a b-shuffle, is equivalent to a single ab-shuffle.

Proof. We prove this result using inverse a-shuffles: to perform an inverse a-shuffle, label
each card in the deck with 1, . . . , a uniformly and independently. Then, from top to bottom,
sort the cards into piles according to their label. Once each card is placed into a pile, place
the piles on top of each other in descending order such that pile 1 is on top of the deck and
pile a is at the bottom.

Suppose we perform an inverse b-shuffle by labelling the cards in the top right corner with
1, . . . , b independently at random, then sorting the 1’s before the 2’s, before the 3’s and so on
before the b’s. Now perform an inverse a-shuffle, labeling the cards in the top left corner with
1, . . . , a independently at random, then sorting the 1’s before the 2’s and so on before the a’s.
Observe that these two processes are equivalent to the following single process: Label the
cards independently at random with {x, y}, where x ∈ {1, . . . , a} and y ∈ {1, . . . , b}. First,
order the cards according to the right-most label (from the b-shuffle). From here, re-order
according to the left-most label. This is equivalent to sorting the cards labeled {1, 1} before
the cards labeled {1, 2}, the {1, 2}’s before the {1, 3}’s, . . . , the {1, a}’s before {2, 1}’s, the
{2, 1}’s before the {3, 1}’s and so on before the cards labeled {a, b}. This single process is
the same as labeling each card 1, . . . , ab independently at random and then sorting the 1’s
before the 2’s,. . . , before the ab’s, which is exactly an inverse ab-shuffle. Therefore, an inverse
b-shuffle followed by an inverse a-shuffle is equivalent to an inverse ab-shuffle. It follows that
an a-shuffle followed by a b-shuffle is equivalent to an ab-shuffle.

Since a riffle shuffle is an a-shuffle for a = 2, then, by the theorem above, m riffle shuffles
is the same thing as a 2m-shuffle and that Rm is the probability density for a 2m-shuffle. The
probability of a permutation π occurring with r rising sequences after m shuffles from the
GSR distribution is therefore

Rm(π) =

(
2m + n− r

n

)
/2mn

Theorem 3.4. [3] For m = log2(n
3/2c) with 0 < c <∞ fixed, as n tends to ∞,

||Rm − U || = 1− 2Φ

(
−2−θ

4c
√

3

)
+Oc

(
1

n1/4

)
where Φ(x) =

∫ x
−∞ e

−t2/2dt/
√

2π

Note that instead of writing m = 3
2

log2 n+ θ, Diaconis and Bayer write m = log2(n
3/2c)

so that c = 2θ satisfies 0 < c < ∞. The proof of Theorem 3.4 uses the asymptotics of
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the Eulerian numbers. To see how Eulerian numbers are involved, we use the equivalent
definition of variation distance:

||Rm − U || = 1

2

∑
π∈Sn

|Rm(π)− U(π)|

Directly substituting the definition of Rm(π) and U(π), then for a permutation π with r
rising sequences, we have:

|Rm(π)− U(π)| =
∣∣∣∣(2m + n− r

n

)
/2mn − 1/n!

∣∣∣∣
Hence, from (4) we have:

||Rm − U || = 1

2

n∑
r=1

An,r

∣∣∣∣(2m + n− r
n

)
/2mn − 1/n!

∣∣∣∣
Although we don’t include a detailed proof of theorem 3.4, it is important to observe

that the function 1− 2Φ
( −1
4c
√
3

)
has the following asymptotic behaviour [3]:

1− 2Φ

(
−1

4c
√

3

)
→ 1

2c
√

6π
as c→∞

1− 2Φ

(
−1

4c
√

3

)
→ 1− 4c

√
3√

2π
exp

[
− 1

2

(
−1

4c
√

3

)2]
as c→ 0

Recall that m = log2(n
3/2c) and c = 2θ. Let θ = j, be the number of shuffles performed

after the first 3
2

log2(n) shuffles.

3.2 Riffle Shuffling for Different Card Games

The mixing time of the riffle shuffle changes depending on what type of card game is being
played. This is due to the fact that particular attributes such as suit, colour or number/face
are irrelevant in some games. In Bayer and Diaconis’ work [3], they show that it takes about
3
2

log2(n) riffle shuffles to mix a deck of n cards. This is the mixing time taking every at-
tribute into consideration, that is, suit, number/face and colour. In some card games, for
example Blackjack and Baccarat, only certain attributes matter; the 10’s and all face cards
are considered “indistinguishable”. In 2011, Assal et al. [2] expanded on prior research [23]
[11] [6] to show the mixing time of the riffle shuffle for different card games. In this section
we go through the main result of [2], which gives a general formula for the mixing time of
the riffle shuffle with an n-card deck with multiple cards of the same type.

In this section, we use convolution powers to model repeated a-shuffles (these are defined
in Section 2.2). Let Qa(wa) denote the probability distribution for an a-shuffle where wa
represents any configuration resulting from an a-shuffle. Hence, we have Qa = 1/an

(
a+n−r
n

)
.
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Lemma 3.5. Consider a deck of cards with Di cards labeled i for 1 ≤ i ≤ v. Starting with
the deck in sorted order with 1’s on top down to v’s on the bottom, after an a-shuffle the
most likely deck configuration is the sorted deck and the least likely deck is the reverse sorted
deck w∗a with v’s on the top and 1’s at the bottom.

Proof. Given a sorted n-card deck described above, any cut of the deck into a packets may
result in the initial sorted deck if the actual a-shuffle performed is the identity. Furthermore,
the identity is at least as likely to occur as any other configuration. In order for the reverse
sorted deck to occur after an a-shuffle, it is necessary that each of the a packets only contains
one type of card. Every configuration of the deck that is possible under this type of cut is
still equally likely to occur. Since w∗a contributes to Qa(wa), it follows that w∗a will minimize

Qa(wa) and hence maximizes 1− Qa(wa)
U

.

In plain English, Lemma 3.5 says that the minimum separation distance is achieved once
the original deck configuration has been completely reversed. To give a more mathematical
motivation for Lemma 3.5, we present the following lemma from [2], which gives explicit
formulas for these probabilities for a deck with two types of cards:

Lemma 3.6. [2] Suppose an n-card deck contains Di cards labeled i and Dj labeled j where
Di +Dj = n. The probability of an a-shuffle resulting in the sorted deck (i’s on top and j s
on the bottom) is

1

aDi+Dj

(
a∑
k=1

(
kDi − (k − 1)Di

)
(a− k + 1)Dj

)
(5)

The probability of an a-shuffle resulting in the reverse sorted deck (j’s on the top, i’s on
the bottom) is

1

aDi+Dj

(
a−1∑
k=1

(
kDi − (k − 1)Di

)
(a− k)Dj

)
(6)

Proof. Let w2 denote any configuration of an n-card deck with Di cards labelled i and Dj

cards labeled j (that is, two distinct labels). Let A = (A1, A2, . . . , Aa) be a non-negative cut
of Di +Dj into a packets, where Al ≥ 0, 1 ≤ l ≤ a is the size of the lth packet. Observe that
the probability of any configuration occurring for this type of deck is∑

A1+A2+···+Aa=Di+Dj

1

an

(
Di +Dj

A1, A2, . . . Aa

)
prob(w2|A)

where prob(w2|A) is the probability that w2 results from successively dropping cards from
the packets Ai. Note, from Lemma 3.5 that in order for the reverse sorted deck to occur
from an a-shuffle, every packet must contain the same type of card. Let k be an integer
such that A1 +A2 + · · ·+Ak = Di. Note that any of the

(
Di+Dj

Di

)
configurations are equally

likely after a subsequent shuffle under this type of cut A, we have prob(w2|A) = 1/
(
Di+Dj

Di

)
for each configuration w2. Summing over these types of cuts A, we have
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∑
A1+A2+···+Aa=Di+Dj

∃ k s.t. A1+A2+···+Ak=Di

1

aDi+Dj

(
Di +Dj

A1, A2, . . . , Aa

)
1(

Di+Dj

Di

)
=

1

aDi+Dj

a−1∑
k=1

Di∑
Ak=1

∑
Ak+1+···+Aa=Dj

A1+···+Ak−1=Di−Ak

(
Di

Ak

)(
Di − Ak

A1, . . . , Ak−1

)(
Dj

Ak+1, . . . , Aa

)

=
1

aDi+Dj

a−1∑
k=1

(a− k)Dj

Di∑
Ak=1

(
Di

Ak

)
(k − 1)Di−Ak

=
1

aDi+Dj

a−1∑
k=1

(a− k)Dj
(
kDi − (k − 1)Di

)
which is exactly (6) above.

Note from Lemma 3.5 that the packets of cards don’t necessarily have to contain the
same type of card to obtain a sorted deck. Hence, we may assume that there exists a
packet with both cards labeled i and j. Therefore, there exists integers k, x, y such that
A1 + · · · + Ak−1 = Di − x, Ak = x + y and Ak+1 + · · · + Aa = Dj − y, where 1 ≤ k ≤ a,
1 ≤ Di ≤ x and 1 ≤ Dj ≤ y. In order to obtain a sorted deck, we need packet Ak to be
placed after all packets A1, . . . , Ak−1 and before all packets Ak+1, . . . , Aa. Therefore, there
is only one way Ak can be placed amongst the rest of the packets. For this type of cut A,
we have prob(w2|A) =

(
Di

x

)(
Dj

y

)
/
(

Di+Dj

Di−x,x+y,Dj−y

)
. Therefore, we have

∑
A1+A2+···+Aa=Di+Dj

∃ k s.t. A1+A2+···+Ak−1<Di

and Ak+1+···+Aa<Dj

1

aDi+Dj

(
Di +Dj

A1, A2, . . . , Aa

)
prob(w2|A)

=
1

aDi+Dj

a∑
k=1

Di∑
x=1

Dj∑
y=1

(
Di

x

)(
Dj

y

) ∑
A1+A2+···+Ak−1=Di−x
Ak+1+···+Aa=Dj−y

(
Di − x

A1, A2, . . . , Ak−1

)(
Dj − y

Ak+1, . . . , Aa

)

=
1

aDi+Dj

a∑
k=1

Di∑
x=1

Dj∑
y=1

(
Di

x

)(
Dj

y

)
(k − 1)Di−x(a− k)Dj−y

=
1

aDi+Dj

a∑
k=1

Di∑
x=1

(
Di

x

)
(k − 1)Di−x

Dj∑
y=0

(
Dj

y

)
(a− k)Dj−y

=
1

aDi+Dj

a∑
k=1

(a− k + 1)Dj
(
kDi − (k − 1)Di

)
which is exactly (5).

The next theorem from [2] gives the separation distance
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Theorem 3.7. Consider a deck of n cards with Di cards labeled i, 1 ≤ i ≤ v. The separation
distance after an a-shuffle of the sorted deck is given by

1− 1

an

(
n

D1, D2, . . . , Dv

) ∑
0=k0<···<kv−1<a

(a− kv−1)Dv

v−1∏
j=1

(
(kj − kj−1)Dj − (kj − kj−1 − 1)Dj

)
Proof. From Lemma 3.5, we know that w∗a can only result from an a-shuffle if all packets
contain the same type of card. We also know that any cut of this type is equally likely to
occur. Therefore Q is given by

Qa(w
∗
a) =

∑
A1+A2+···+Aa=n
A partitions D

1

an

(
n

A1, . . . , Aa

)
1(
n

D1,...,Dv

) (7)

where “A partitions D” means there exists indices k1, . . . , kv−1 such that A1+· · ·+Ak1 = D1,
and for i = 2, . . . , v−1, Aki−1+1+· · ·+Aki = Di. In order to avoid overcounting compositions
with empty packets, we may take the ki’s to be minimal. Hence, (7) simplifies to

1

an

∑
0=k0<···<kv−1<a

(a− kv−1)Dv

v−1∏
j=1

(
(kj − kj−1)Dj − (kj − kj−1 − 1)Dj

)
By Lemma 3.5, the result follows.

Recall that the original analysis of the mixing time of the riffle shuffle uses total variation
distance to measure the distance to uniformity, which is slightly difference from the separation
distance measure. However, the results are still highly comparable. The following table gives
the results from Bayer and Diaconis’ work from [3] and from Assal et al. [2] for a deck of 52
cards after m 2-shuffles:

m 1 2 3 4 5 6 7 8 9
Bayer and Diaconis [3] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.995 0.928

Blackjack [2] 1.00 1.00 1.00 1.00 0.999 0.970 0.834 0.596 0.366

As we can see, since the game of Blackjack uses fewer “distinct” cards, fewer riffle shuffles
are required to mix the deck. Since the result in Theorem 3.7 can be used for general deck
with different numbers of particular type of cards, in general, fewer distinct cards as well as
equal amounts of distinct cards will lead to less riffle shuffles to mix a deck.

3.3 Carries and Card Shuffles

Have you ever considered that the sequence of numbers that resulted from carrying while
performing long addition were actually meaningful? In this section we will prove a result by
Fulman and Diaconis [9] that relates riffle shuffling to the sequence of numbers carried while
performing long addition.
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Theorem 3.8. [9]: The probability that the base-b carries chain goes from 0 to j in r steps
is equal to the probability that the permutation in Sn obtained by performing r successive
b-shuffles (started at the identity) has j descents

The proof relies on the following results by Holte [12]:

• Given n integers (base b) whose digits were chosen at random from {0, 1, . . . , b − 1},
let κ0 = 0, κ1, . . . be the sequence of carries that results after adding them. The
probability that the next carry is j given that the previous carry was i is

Pb(i, j) =
1

bn

j−bi/bc∑
l=0

(−1)l
(
n+ 1

l

)(
n− 1− i+ (j + 1− l)b

n

)
(8)

The matrix Pb whose entries are Pb(i, j) is called an amazing matrix in [12].

• The product of two amazing matrices for base-a and base-b number respectively is the
amazing matrix for base-ab numbers:

PaPb = Pab (9)

Holte found that the sequence of carries κ0 = 0, κ1, . . . from adding n base-b integers
(chosen at random) forms a Markov chain taking values in {0, 1, . . . , n− 1}. While studying
the Markov chain, he came up with the definition of the amazing matrix whose entries P (i, j)
are described above. In addition, Holte also showed that the jth entry of the left eigenvec-
tor of an amazing matrix with eigenvalue 1 is An,j/n!. So, by the fundamental theorem of
Markov chain theory, An,j/n! is the long term frequency of carries of j when long random
numbers are added [9].

The proof also relies on the following proposition from [9]:

Proposition 3.9. Let π be a permutation with d descents. Let cdij be the number of ordered
pairs (τ, µ) of permutations in Sn such that τ has i descents and µ has j descents and τµ = π.
Then

∑
i,j≥0

cdijs
i+1tj+1

(1− s)n+1(1− t)n+1
=
∑
a,b≥0

(
n+ ab− d− 1

n

)
satb (10)

Proof of Theorem 3.8. Since an a-shuffle followed by a b-shuffle is an ab-shuffle, then r b-
shuffles is the same as a br-shuffle. By (2), the number of br-shuffles that result in a per-

mutation π with d(π−1) is
(
n+br−d(π−1)−1

n

)
. From the definition of cdi,j above note that c0ij is

the number of pairs (τ, µ) such that d(τ) = i, d(µ) = j and τµ = idSn . That is, c0i,j is the
number of permutations µ with d(µ) = j and d(µ−1) = i. For fixed i and j,(

n+ br − i− 1

n

)
c0ij
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is the number of br-shuffles (starting at the identity) which results in a permutation µ with
j descents. For all i, the number of br-shuffles that result in a permutation with j descents
is ∑

i≥0

(
n+ br − i− 1

n

)
c0ij

and therefore, the probability that a br-shuffle (starting from the identity) results in a per-
mutation with j descents is ∑

i≥0

1

brn

(
n+ br − i− 1

n

)
c0ij (11)

From (3), this gives

∑
i,k≥0

c0i,ks
i+1tk+1

(1− s)n+1(1− t)n+1
=
∑
a,h≥0

(
n+ ah− 1

n

)
sath (12)

Taking the coefficient of sb
r

of (8) on both sides and multiplying by (1− t)n+1 we have

∑
i,k≥0

c0i,k

(
n+ br − i− 1

n

)
tk+1 =

∑
h≥0

(1− t)n+1

(
n+ brh− 1

n

)
th

Taking the coefficient of tj+1 on both sides and multiplying by 1
brn

, we get

1

brn

∑
i≥0

c0i,j

(
n+ br − i− 1

n

)
=

1

brn

∑
l≥0

(−1)l
(
n+ 1

l

)(
n+ br(j + 1− l)− 1

n

)
(13)

Observe that the left-hand side is exactly the probability that a br-shuffle results in a per-
mutation with j descents.

From (4) the entries of the matrix Pbr are

Pbr(i, j) =
1

brn

j−bi/brc∑
l=0

(−1)l
(
n+ 1

l

)(
n− 1− i+ (j + 1− l)br

n

)
setting i = 0 we obtain

Pbr(0, j) =
1

brn

j∑
l=0

(−1)l
(
n+ 1

l

)(
n− 1 + (j + 1− l)br

n

)
which is exactly the right-hand side of (10). By (5) have have that Pbr(0, j) = P r

b (0, j),
which is the probability that the carries chain goes from 0 to j in r steps.
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4 The Random-to-top Shuffle

The random-to-top shuffle is the inverse of the top-to-random shuffle (or top-in-at-
random shuffle). Consider a deck of n cards labeled 1 through n. To perform a single
random-to-top shuffle, one chooses a card uniformly at random from the deck, removes it
from the deck, and places it at the top (or front) of the deck, while all other cards remain
untouched and in their relative original order. In this section of the paper, we show how
random-to-top shuffles are related to two well-known combinatorial objects: Bell numbers
and Young tableau. We also give a proof of the mixing time of the random-to-top shuffle.

Corollary 4.1. There are nn different sequences of n random-to-top shuffles that can be
performed on a deck of size n

Proof. Consider a deck of n cards. For each random-to-top shuffle, there are n choices for
the card that will be chosen to move to the top of the deck. Since each sequence contains n
shuffles, there are nn in total.

In Section 4.3, we show how many of these sequences return the deck to its original order.

4.1 Lifting Cards

We can think of a random-to-top shuffle as a simple act of “lifting” a card. In this
section, we give a detailed explanation of what it means to “lift” a card, as well as some new
terminology.

Consider a deck of n distinct cards 1, 2, . . . , n. The state of the deck is the ordering of
its cards, denoted by ρ = ρ1ρ2 · · · ρn, where ρi is the card in position i for all i ∈ [n]. That
is, the states of the deck are permutations of the elements {1, 2, . . . , n}, which are exactly
the elements in the symmetric group on n elements, denoted by Sn.

We say that cards ρi and ρj are in natural order when ρi < ρj, for i < j, and that
cards ρi and ρj are out of order when, ρi > ρj for i < j. When cards ρi < ρj, for i < j, for
all i, j ∈ [n], we say that the deck is in natural state. That is, the deck is in natural state
ρnatural = 12345...n when card ρi = c is in position i = c for all c ∈ [n]. This is exactly the
identity permutation of Sn, denoted by idn.

We transform the deck by applying a sequence of random-to-top shuffles, which we call
lifts. We refer to the time at which we lift card c as a stage. If no such card c ∈ [n] has been
lifted, we say that the deck is in the initial stage. In terms of the underlying permutation,
we define lifting c as the following: suppose we have a deck in state ρ = ρ1ρ2 · · · ρn at an arbi-
trary stage m. To lift c ∈ [n], identify position i such that ρi = c. Remove c from its current
position, and place it at the top of the deck (in position 1), keeping all other cards in their
relative order. After lifting ρi = c, the deck will be in the state ρ′ = ρiρ1 . . . ρi−1ρi+1 . . . ρn.
In terms of the symmetric group, ρ′ = σim(ρ), where σim = (12 · · · i), is a permutation in
Symn.
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4.2 Properties of the Lifting Process

In the previous section we explained what it meant to “lift” a card. For consistency and
clarity, we list a few important properties of the lifting process.

Consider a deck of cards 1, 2, . . . , n in natural state. Suppose we apply a sequence of
shuffles σat . . . σa2σa1 , where ai ∈ [n]. Suppose at some stage, cards c+ 1, c+ 2, . . . , n are in
natural order, cards c, c + 1 are out of order, and no card from c + 1, c + 2, . . . , n is lifted
after that stage. We call this Property c, since, at this particular stage, c would be the
greatest card out of order with respect to cards c + 1, c + 2, . . . , n. If the cards are in such
an arrangement at a particular stage, we say that the deck satisfies Property c.

1. After card c is lifted, then c is in natural order with respect to cards c+ 1, c+ 2, . . . , n
and out of order with respect to cards 1, 2, . . . , c− 1.

2. The only way to change the relative order of cards c and c+1 is to either lift c or c+1.
That is, lifting any other card will not affect the relative order of cards c and c+ 1.

3. If at some stage, the order of the deck satisfies Property c, for some c ∈ [n], then in
order for the deck to be put into natural order, c must be lifted at least once after
that stage. Moreover, in the last subsequent stage at which c is lifted, no card from
c, c+ 1, . . . , n will be lifted thereafter and cards c, c− 1 will now be out of order, hence
the deck will satisfy Property c − 1. That is, at the last subsequent stage that card
c ∈ [n] is lifted, the deck will satisfy property c− 1.

4. If k is the greatest card lifted among all stages, then cards k, k + 1, . . . , n will be in
natural order in every state. Moreover, at the last subsequent stage that k is lifted, k
will be out of order with cards k− 1, k− 2, . . . , 2, 1, and the deck will satisfy Property
k-1.

4.3 Bell Numbers and the Random-to-top Shuffle

A partition of a set is a collection of nonempty, pairwise disjoint subsets of a set S,
whose union is S. Bell numbers count the number of ways a set can be partitioned. We
denote by Bt the Bell number for a set of size t.

For t, n ∈ N∪ {0}, let Bt(n) denote the number of set partitions of {1, 2, 3, . . . , t} into at
most n parts. Note that if n ≥ t, then Bt(n) is the Bell number Bt. Define B′t(n) analogously,
such that no part contains both 1 and t or both i and i+ 1 for i ∈ {1, 2, . . . , t}.

For t, n ∈ N ∪ {0}, let St(n) be the number of sequences of t random-to-top shuffles
whose product is the identity permutation. Define S′t(n) analogously, excluding the identity
permutation.
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Lemma 4.2. [5]: If t, n ∈ N ∪ {0} then Bt(n) = St(n) and B′t(n) = S′t(n)

Proof. For ai ∈ [n], let σat · · ·σa2σa1 , be a sequence of random-to-top shuffles such that
σat · · ·σa2σa1 = idn. Consider a deck of cards 1, 2, . . . , n in the natural state. Apply shuffles,
σat · · ·σa2σa1 , from right to left. For each card c ∈ [n], let Ac denote the set of stages s ∈ [t]
at which card c is lifted.

Now, consider the subsets A1,A2, . . . ,An. If k is the greatest card lifted among all stages,
then by Property 4, the sets Ak+1,Ak+2, . . . ,An, are empty (since there is no stage s ∈ [t]
at which any of k + 1, k + 2, . . . , n are lifted). Moreover, there will be exactly n− k empty
sets. By Property 3, the sets A1,A2, . . . ,Ak are all non-empty.

For c ∈ {1, 2, . . . , k}, let µc denote the greatest element in Ac. The greatest element in
Ac is the last stage in which card c is lifted. Therefore, by Property 3, we have that:

µc > µc+1 > µc+2 > · · · > µk

Therefore, Ac contains the greatest element in {1, 2, . . . , t}\Ac−1 ∪Ac−2 ∪ · · · ∪A1.

If we discard the empty sets Ak+1,Ak+2, . . . ,An, we are left with a set partition of [t],
{A1,A2, . . . ,Ak}, in canonically decreasing order of largest element in each block.

We claim that given an arbitrary set partition of [t] into p ≤ n parts, we can label each
block A1,A2, ...,Ap, which will determine a sequence of lifts that, when applied to a deck of
n cards in natural state, leaves the deck in natural state.

Let Φ be a set partition of [t] into p ≤ n blocks. Find the largest element in each part;
since each block is non-empty, each one will have a largest element. Order the blocks from
left to right in decreasing order of greatest element. Since each block has a unique largest
element, there is only one way to arrange the blocks in this order. Label the blocks from
left to right with A1,A2, . . . ,Ap, respectively. That is, label the block with the `th largest
element A`. Note that there is only one way to canonically order these blocks into decreas-
ing order of largest element. Therefore, the condition above fixes A1, . . . ,Ap, . . . ,An, and
determines a unique sequence of lifts, which, when applied to a deck of n cards in the natural
state, returns the deck to natural state. Therefore, Bt(n) = St(n).

A set partition corresponds to a sequence of non-identity shuffles if and only if the same
card is never lifted in consecutive stages, i.e. Ac cannot contain both s and s + 1 for all
s ∈ [t], and 1 6∈ A1. Observe that this is just a restriction of the above bijection, and we get
that B′t(n) = S′t(n).
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Consider the following example. Let n = 9 and t = 8, and consider the sequence of
shuffles σ5σ6σ6σ4σ6σ3σ6σ4.

Card Lifted State of the deck Stage Shuffle Position lifted
- 1 2 3 4 5 6 7 8 9 0 idn -

lift 4 4 1 2 3 5 6 7 8 9 1 σ4 4
lift 6 6 4 1 2 3 5 7 8 9 2 σ6 6
lift 1 1 6 4 2 3 5 7 8 9 3 σ3 3
lift 5 5 1 6 4 2 3 7 8 9 4 σ6 6
lift 4 4 5 1 6 2 3 7 8 9 5 σ4 4
lift 3 3 4 5 1 6 2 7 8 9 6 σ6 6
lift 2 2 3 4 5 1 6 7 8 9 7 σ6 6
lift 1 1 2 3 4 5 6 7 8 9 8 σ5 (idn) 5

By definition, Ac contains stages s ∈ {1, 2, . . . , t} in which card c is lifted, which means,
we only need to look at the first card in each state, and the corresponding stage to determine
the sets:

A1 = {3, 8}
A2 = {7}
A3 = {6}
A4 = {1, 5}
A5 = {4}
A6 = {2}
A7 = ∅
A8 = ∅
A9 = ∅

Now suppose we discard the empty sets A7,A8 and A9. Then we are left with

A1 = {3, 8}
A2 = {7}
A3 = {6}
A4 = {1, 5}
A5 = {4}
A6 = {2}

in canonical decreasing order of largest element. Hence the set partition is
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{{1, 5}, {2}, {3, 8}, {4}, {6}, {7}}

Now consider an example of the reverse process. Suppose we partition a set of t = 7,
into p = 3 parts, and let n = 8,

{{1, 3}, {2, 5, 7}, {4, 6}}

Re-order the sets from left to right in decreasing order of largest element, to obtain:

{{2, 5,7}, {4,6}, {1,3}}

Label the sets from left to right with A1,A2,A3 respectively. That is, A1 = {2, 5, 7},A2 =
{4, 6}, and A3 = {1, 3}. From here we can determine the corresponding sequences of lifts:

Stage Card lifted
1 3
2 1
3 3
4 2
5 1
6 2
7 1

from which we can determine the sequence of shuffles, when we apply them to a deck of
n = 8 cards in natural state:

Stage Card lifted State Shuffle
- - 12345678 idn
1 3 31245678 σ3
2 1 21345678 σ3
3 3 32145678 σ2
4 2 23145678 σ3
5 1 12345678 σ2
6 2 21345678 σ2
7 1 12345678 σ2

Remark. Observe that Lemma 4.1 is equivalent to the following: The number of sequences
of n random-to-top shuffles that return a deck of size n to its original order is Bn.

Since there are n! permutations of a deck of size n, then from Lemma 4.2, we get that
the probability that a sequence of n random-to-top shuffles returns a deck of size n to it’s
original order is Bn/n!, which is notably larger than 1/n!.
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4.4 Young Diagrams

Young diagrams are most often used to describe and study representations of the sym-
metric group. For every partition of the elements of a finite group, there is a Young diagram.
A Young diagram is an arrangement of boxes (or cells). For each integer in the partition,
there is a row of boxes; one box per element. These rows are stacked on top of one another
such that the left-most boxes are all aligned. From top-to-bottom, the rows are arranged in
non-increasing order with respect to row-length (i.e. the number of boxes in the row).

For example, consider the partition λ = λ1, λ2, λ3, λ4 of 9, where λ1 = 3, λ2 = 3, λ3 =
2, λ4 = 1. The following diagram is the corresponding Young diagram for this partition:

We say that a box in a Young diagram is removable if removing it leaves the Young
diagram of a partition; a partition is said to be addable if, when we add a box, we get a
Young diagram of a partition.

A move on a partition consists of the removal of a removable box and then addition in
an addable position of a single box.

A move is exceptional if it consists of the removal and then addition in the same place
of the lowest removable box.

Given partitions λ and µ of the same size, let Mt(λ, µ) denote the number of sequences of
t moves that start at λ and finish at µ. Let M′t(λ, µ) be defined analogously, considering only
non-exceptional moves. For n ∈ N∪{0} let Mt((n), (n)) = Mt(n), and M′t((n), (n)) = M′t(n).
If the Young diagram of a partition λ has exactly r removable boxes, then Mt(λ, µ) = r and
M′t(λ, µ) = r − 1.

Let Cl(Sn) denote the ring of class functions of Sn. That is, Cl(Sn) consists of all func-
tions that are constant on the conjugacy classes. Let π ∈ Cl(Sn) be the character of Sn,
defined by π(t) =| fix(τ) | for τ ∈ Sn.

Let χλ denote the irreducible character of Sn canonically labeled by the partition λ of n.
Let ϑ = π − 1Sn where 1Sn is the trivial character of Sn. Then we have that ϑ = χ(n−1,1).

Let φ ∈ Cl(Sn). Then, for all σ, τ ∈ Sn we have φ(σ) = φ(τ−1στ). Let Sn−1 be the
subgroup of Sn consisting of all permutations on the set {1, 2, 3, . . . , n} in which n is a fixed
point. For i ∈ [n− 1], define ti = (in) ∈ Sn to be the transposition that interchanges i and
n, and let tn = (nn) denote the identity permutation. Then {t1, t2, . . . , tn} is a set of left
coset representatives for Sn with respect to the subgroup Sn−1, that is,
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Sn = t1Sn−1 ∪ t2Sn−1 ∪ · · · ∪ tnSn−1.

Let Φ be a representation of Sn−1 ⊂ Sn of degree d. For every element s ∈ Sn define a
matrix

Ψs =


Φ(t−11 st1) Φ(t−11 st2) Φ(t−11 st3) . . . Φ(t−11 stn)
Φ(t−12 st1) Φ(t−12 st2) Φ(t−12 st3) . . . Φ(t−12 stn)

...
...

...
. . .

...
Φ(t−1n st1) Φ(t−1n st2) Φ(t−1n st3) . . . Φ(t−1n stn)


Note that each Ψs is an n×n array of blocks, each of which has degree d. A fundamental

result of Frobenius says that Ψ is a representation of Sn. We say that Ψ is the induced
representation of Sn and we write Ψ = Φ ↑Sn

Sn−1
. Therefore, the induced character of Φ ↑Sn

Sn−1
,

denoted by φ ↑Sn
Sn−1

, is defined as follows:

φ ↑Sn
Sn−1

= Tr(Φs ↑Sn
Sn−1

)

= Tr(Ψs)

= Tr


Φ(t−11 st1) Φ(t−11 st2) Φ(t−11 st3) . . . Φ(t−11 stn)
Φ(t−12 st1) Φ(t−12 st2) Φ(t−12 st3) . . . Φ(t−12 stn)

...
...

...
. . .

...
Φ(t−1n st1) Φ(t−1n st2) Φ(t−1n st3) . . . Φ(t−1n stn)


=

n∑
i=1

Tr(Φ(t−1i sti))

=
n∑
i=1

φ(t−1i sti)

where the summation is over all i such that t−1i sti ∈ Sn−1. Recall that for all s ∈ Sn, we
have π(s) =| fix(s) |. Therefore we have that

π(s) = number of fixed points in s

= number of i ∈ {1, 2, . . . , n} such that n is a fixed point of t−1i sti

= number of i ∈ {1, 2, . . . , n} such that t−1i sti ∈ Sn−1
=

∑
i=1

t−1
i sti∈Sn−1

1

It follows that, for any character φ of Sn, we get

φ(s)π(s) =
n∑
i=1

φ(t−1i sti) (14)
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and hence,

φπ = φ(1 ↑Sn
Sn−1

) = (φ ↓Sn−1) ↑Sn (15)

In any group G, for any complex-valued functions f, g defined on G, we have the group
inner product

〈f, g〉G = 1
|G|
∑

x∈G f(x)g(x)

where g(x) is the complex conjugate of g(x).

Frobenius reciprocity: For any subgroup H of G, and any character f of H, and g of
G, we have

〈f, g ↑GH〉G = 〈f ↓GH , g〉H

where g ↓GH is the restricted character of a representation G of G, where, for some ε ∈ G

g ↓GH (ε) = Tr(G ↓GH (ε))

= Tr(G(ε))

= g(ε)

In the following Lemma, we show, using Frobenius reciprocity and properties of irre-
ducible characters of the symmetric group, how Mt(λ, µ) can be written as a tensor product
of characters of Sn.

Lemma 4.3. [5]: Let t ∈ N ∪ {0}. If λ and µ are partitions of n ∈ N then Mt(λ, µ) =
〈χλπt, χµ〉 and M′t = 〈χλϑt, χµ〉.

Proof. Let χλ denote the irreducible character of Sn indexed by the partition λ of n. A
standard fact about irreducible characters is the orthogonality relation

〈χλ, χµ〉 =

{
1 if λ = µ

0 otherwise
(16)

For a partition α of n and β of n − 1, we write α = β+ when the Young diagram of α
can be obtained by adding an addable box to the Young diagram of β. Similarly, we write
β = α− when the Young diagram of β can be obtained by removing a removable box from
the Young diagram of α. By the Branching Rule, we have that

χα =
∑
γ=α−

χγ (17)

24



For the base case, let t = 0. We have

〈χλπ0, χµ〉Sn = 〈χλ, χµ〉Sn =

{
1 if λ = µ

0 otherwise

which is exactly M0(λ, µ), since the number of sequences of 0 moves that start at λ and end
at µ is 1 when λ = µ and 0 otherwise.

For the inductive hypothesis, assume that the result is true for m = k, for some arbitrary
integer k ≥ 0, hence

〈χλπk, χµ〉Sn = Mk(λ, µ) (18)

for any partitions λ and µ of n.

Since χλπk is a character of Sn, we can express this as a linear combination of irreducible
characters of Sn. That is,

χλπk =
∑
α

Cαχ
α

where Cα ∈ N ∪ {0}, and the summation is over all partitions α of n. Therefore, we have

〈χλπk, χµ〉Sn = 〈
∑
α

Cαχ
α, χµ〉Sn

=
∑
α

Cα〈χα, χµ〉Sn

= Cµ

where Cµ is the coefficient for any partition µ of n. Therefore, we have

χλπk =
∑
α

Mk(λ, α)χα (19)
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To prove the result for m = k + 1 we have

〈χλπk+1, χµ〉Sn = 〈
(
χλπk

)
π, χµ〉Sn

= 〈
((
χλπk

)
↓Sn−1

)
↑Sn , χµ〉Sn from (15)

= 〈

((∑
α

Mk(λ, α)χα

)
↓Sn−1

)
↑Sn , χµ〉Sn from (19)

=
∑
α

Mk(λ, α)〈((χα) ↓Sn−1) ↑Sn , χµ〉Sn

=
∑
α

Mk(λ, α)〈(χα) ↓Sn−1 , χ
µ ↓Sn−1〉Sn−1 by Frobenius reciprocity

=
∑
α

Mk(λ, α)〈
∑
γ=α−

χγ,
∑
ν=µ−

χν〉Sn−1 from (17)

=
∑
α

Mk(λ, α)
∑
γ=α−

∑
ν=µ−

〈χγ, χν〉Sn−1

=
∑
α

Mk(λ, α)
∑

α−=µ−

1 from (16)

Since
∑

α−=µ− 1 is the number of ways that a single move can start with α and end with
µ, we have ∑

α Mk(λ, α)
∑

α−=µ− 1 = Mk+1(λ, µ)

which proves the result for m = k + 1 and hence finishes the proof by induction on k ≥ 1.

Now, we give the result for the second statement in the Lemma.Let ϑ = π − 1Sn , where
1Sn is the trivial character of Sn. Similar to the case above, when t = 1 we have

〈χλϑ0, χµ〉Sn = 〈χλ, χµ〉Sn =

{
1 if λ = µ

0 otherwise

which is equal to M0(λ, µ), hence M0(λ, µ) = M′0(λ, µ).
For the induction hypothesis, assume the result is true for m = k for some arbitrary

integer k ≥ 0, hence

〈χλϑk, χµ〉Sn = M′k(λ, µ) (20)

for any partitions λ and µ of n. Similarly to the case above we also have the following
summation result

χλϑk =
∑
α

M′k(λ, α)χα (21)
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so we obtain

〈χλϑk+1, χµ〉 = 〈(χλϑk)ϑ, χµ〉

= 〈(
∑
α

M′k(λ, α)χα)ϑ, χµ〉

=
∑
α

M′k(λ, α)〈χαϑ, χµ〉

=
∑
α

M′k(λ, α)〈χα(π − 1), χµ〉

=
∑
α

M′k(λ, α)
[
〈χαπ, χµ〉 − 〈χα, χµ〉

]
=
∑
α

M′k(λ, α)
[
〈(χα ↓§n−1 , χ

µ〉 − 〈χα, χµ〉
]

=
∑
α

M′k(λ, α)
[
〈χα ↓Sn−1 , χ

µ ↓Sn−1〉Sn−1 − 〈χα, χµ〉
]

=
∑
α

M′k(λ, α)
[
〈
∑
γ=α−

χγ,
∑
ν=µ−

〉Sn−1 − 〈χα, χµ〉
]

=
∑
α

M′k(λ, α)
[ ∑
γ=α−

∑
ν=µ−

〈χγ, χν〉Sn−1 − 〈χα, χµ〉
]

=
∑
α

M′k(λ, α)
[ ∑
α−=µ−

1− 1
]

Recall that M′k(λ, µ) is the number of sequences of k moves that start at λ and end
at µ, only considering non-exceptional moves (moves which do not consist of removing and
adding the lowest removable box). Observe that in order to start with λ and end with µ by
performing an exceptional move, we must have that λ = µ. Therefore in order to be able to
calculate M′k(λ, µ) we need to count the number of exceptional moves, and hence we need
λ = µ.

In our calculation above, in order to take away the number of exceptional moves, we
require that α = µ, and analogously that α− = µ−. By the orthogonality relation, we have
that 〈χα, χµ〉 = 1 and 〈χγ, χν〉=1. Hence, we obtain

∑
α−=µ− 1− 1, which is the number of

ways that a single move can start at α and end with µ, only considering non-exceptional
moves. Therefore, we have that

∑
α

M′k(λ, α)
[ ∑
α−=µ−

1− 1
]

= M′k+1(λ, µ)

We now use Lemma 4.3 to show that St(n) = Mt(n). Let Des(Sn) be the descent
algebra of the symmetric group on n objects. The elements in Des(Sn) are Dα for α ⊆
{1, 2, . . . , n − 1}, where Dα =

∑
σ∈Sn

σ is the sum over all permutations σ in Sn with

27



descents in positions α. For example, let n = 4 and consider α = {1, 3}. Then D{1,3} is the
sum over all permutations of 4 letters with descents in positions 1 and 3. Namely,

D{1,3} = 4231 + 4132 + 3241 + 3142 + 2143

In this paper, every element in Des(Sn) has coefficients belonging to Q and hence Des(Sn)
can be defined as a subalgebra of the group algebra QSn.

Recall that σm = (123 . . .m) is the permutation in Sn that lifts the card in position m.
Let Ξ =

∑n
m=1 σ

−1
m and let ∆ = Ξ − idn. From the definition of Dα above we have that

∆ = D{1} and Ξ = D{1} +D∅ and hence ∆,Ξ ∈ Des(Sn).

Recall that Cl(Sn) is the class algebra of Sn. By [4] (Theorem 1.2) or [26] (Theorem 1)
let f : Des(Sn) → Cl(Sn) be the epimorphism defined as follows:

Ξ 7→ π

idSn 7→ 1Sn

∆ 7→ ϑ

Define the bilinear form (−,−) on QSn by

(g, h) =

{
1 if g = h−1

0 otherwise

By [4] the epimorphism defined above is an isometry with respect to the bilinear form on
Des(Sn) and hence we have that (g, h) = 〈f(g), f(h)〉.

Lemma 4.4. [5]: If t, n ∈ N ∪ {0} then St(n) = Mt(n) and S ′t(n) = M ′
t(n)

Recall that in Lemma 4.2 we prove that Bt(n) = St(n), hence Bt(n) = Mt(n) follows
immediately from Lemma 4.4.

Proof. For n = 0, St(0) is the number of t sequences of shuffles of zero cards whose product
is the identity and Mt(0) is the number of sequences of t moves that start at (0) and finish at
(0), therefore for t ∈ N we have St(0) = 0 = Mt(0) and for t = 0 we have S0(0) = 1 = M0(0).

Now consider St(n) andMt(n) for n ≥ 1. From Lemma 4.3, we haveMt(n) = 〈χ(n)πt, χ(n)〉,
where χ(n) is the irreducible character of Sn labeled by the single-part partition (n), hence
χ(n) = 1Sn and we have that Mt(n) = 〈χ(n)πt, χ(n)〉 = 〈πt, 1Sn〉.

From the remark before the lemma we have that

〈πt, 1sn〉 = 〈f(Ξt), f(idSn)〉 = (Ξt, idSn)

.
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and from the definition of (−,−) we have that

(Ξt, idSn) = (
∑
σ∈Sn

gσσ
−t, idSn)

=
∑
σ∈Sn

gσ(σ−t, idSn)

=
∑

σ=idSn

gσ(σ−t, idSn)

= [idSn ]Ξt

By definition, we have

St(n) = |{1 ≤ a1, a2, . . . , at ≤ n : σat · · ·σa1 = idSn}|
= |{1 ≤ a1, a2, . . . , at ≤ n : σ−1a1 · · ·σ

−1
at = idSn}|

= [idSn ]Ξt

which proves the result for St(n).

Recall that S ′t(n) is the number of sequences of t random-to-top shuffles, none of which
are the identity permutation, whose product is the identity permutation. From Lemma 4.3,
we have M ′

t(λ, µ) = 〈χλϑt, χµ〉 and hence

M ′
t(n) = 〈χ(n)ϑt, χ(n)〉

= 〈ϑt, 1Sn〉
= 〈(π − 1Sn)t, 1Sn〉
= 〈f(∆t), f(1Sn)〉
= (∆t, 1Sn)

Similar to the calculation of [idSn ]Ξt we have (∆t, 1Sn) = [idSn ]∆t. By the definition of
S ′t(n), we have

S ′t(n) = |{1 ≤ a1, a2, . . . , at ≤ n : σat · · ·σa1 = idSn , σai 6= idSn}|
= |{1 ≤ a1, a2, . . . , at ≤ n : σ−1a1 · · · σ

−1
at = idSn , σai 6= idSn}|

= [idSn ]∆t

which proves the result for S ′t(n).

4.5 The Mixing Time

In 1986, Diaconis and Aldous [1] gave a proof of the mixing time of the top-to-random shuffle,
which is the inverse of the random-to-top shuffle. Since these shuffles are inverses of each
other, they have the same mixing times. However, the proof in [1] cannot be used directly
for the random-to-top shuffle. In this section we give a detailed proof of the mixing time of
the random-to-top shuffle.
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A Few Definitions

Before we give the proof of the mixing time of the random-to-top shuffle, we must first
introduce a few definitions.

Consider a deck of n cards. Recall, that when a card is lifted, it is placed at the top of
the deck, and that one shuffle consists of a single lift. Let Li denote the ordered list of lifted
cards, in the order in which they appear in the deck in the ith stage. Recall that after the
ith shuffle, the deck is in the ith stage. Let Ui denote the ordered list of cards that have not
yet been lifted, in the order in which they appear in the ith stage. Observe, that at the ith

stage, the top |Li| = k cards have all been lifted at least once in a previous stage. We also
observe that k increases between consecutive shuffles by at most one. That is, if |Li| = |Lj|
for i < j, then a card already in Li was lifted at the jth stage. If |Li| < |Lj|, then a card in
Ui was lifted at the jth stage. Once a card belongs to Li, for any i, it can never be removed.

Since k increases by at most 1 between consecutive shuffles, it follows that |U | decreases
by at most one between consecutive shuffles. The list of values |Li| from i = {1, . . . , n} is
therefore a weakly increasing sequence, and the list of values of |Ui| from i = {1, . . . , n} is a
weakly decreasing sequence.

Since none of the cards in Ui have been lifted, they will remain in the same order with
respect to the other cards in Ui. Since each card that is lifted is chosen uniformly at random,
the list or cards Li is random, and the order is also random.

For example, consider the deck 12345.

Stage k State Li Ui

0 0 12345 {∅} {1, 2, 3, 4, 5}
1 1 21345 {2} {1, 3, 4, 5}
2 1 21345 {2} {1, 3, 4, 5}
3 2 42135 {4, 2} {1, 3, 5}
4 3 54213 {5, 4, 2} {1, 3}
5 3 45213 {4, 5, 2} {1, 3}
6 4 14523 {1, 4, 5, 2} {3}
7 5 31452 {3, 1, 4, 5, 2} {∅}

Expected number of trials until success

Lemma 4.5. : Let X be a random variable on a set G. Suppose that X = g for g ∈ G is
considered a success with probability p and that X 6= g is considered a failure, with probability
1− p. Then the expected number of independent trials until the first success is 1

p
.

Proof. Let A denote the event that X = g. The probability of the event A occurring for the
first time on the mth trial in a series of independent trials is (1 − p)m−1p. Let E[A] denote
the expected number of independent trials before the event A occurs for the first time. We
can model E[A] by the following infinite series:

E[A] = p+ 2(1− p)p+ 3(1− p)2p+ 4(1− p)3p+ · · ·+m(1− p)m−1p+ ... (22)
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Factoring p out, we get:

E[A] = p · [1 + 2(1− p) + 3(1− p)2 + 4(1− p)3 + · · ·+m(1− p)m−1 + ...] (23)

Multiply both sides by (1− p):

(1− p) · E[A] = p · [(1− p) + 2(1− p)2 + 3(1− p)3 + 4(1− p)4 + · · ·+m(1− p)m + ...]
(24)

Subtracting (11) from (10) we get:

p · E[A] = p · [1 + (1− p) + (1− p)2 + (1− p)3 + (1− p)4 + · · ·+ (1− p)m + ...] (25)

Dividing both sides by p:

E[A] = [1 + (1− p) + (1− p)2 + (1− p)3 + (1− p)4 + · · ·+ (1− p)m + ...] (26)

This is exactly the infinite geometric series with common ratio (1− p). Hence we have:

E[A] =
∞∑
m=0

(1− p)m (27)

=
1

1− (1− p)
(28)

=
1

p
(29)

Lemma 4.6. The expected number of random-to-top shuffles before the deck is considered
random is O(n log n).

Proof. Consider a deck of n cards. Recall that in a sequence of shuffles, a deck of cards is
in the initial stage if no card has been lifted. Thus, in the initial stage, every card is in U
and we have k = 0. Observe that k = 0 only in the initial stage, hence the expected number
of shuffles before the first time k = 1 is exactly 1. Henceforth, we denote by Ti, the time at
which k = i for the first time.

Suppose k = 1, and consider T2. That is, consider the first time that a second card from
U is lifted. When k = 1, the probability of lifting a card in U is p = n−1

n
, hence the average

number of shuffles before k = 2 is 1
p

= n
n−1 .

Observe that when k = i, we have |U | = n− i. It follows that the probability of lifting
a card from U when k = i is p = n−i

n
, and that when k = i, the average number of shuffles

before k = i+ 1 is n
n−i .

Recall that at every stage, the set L is a random set of cards in random order. Thus,
when k = n − 1, n − 1 of the n cards in the deck are in random order, and since |U | = 1
and U is also a random set of cards, then we have that the whole deck is in random order.
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Let A be the time it takes for every card in the deck to be lifted at least once. By
linearity of expected value, E[A] can be expressed as the sum of the expected values of k for
all possible values of k:

n−1∑
i=1

E[k = i] = 1 +
n

n− 1
+

n

n− 2
+ · · ·+ n

2
+
n

1

= n · ( 1

n
+

1

n− 1
+

1

n− 2
+ · · ·+ 2 + 1)

= n ·
(

log n+ γ +
1

2n
+O

( 1

n2

))
= O(n log n)

Consider the example above with a deck of 5 cards: 12345

Stage k State Li Ui Ti
0 0 12345 {∅} {1, 2, 3, 4, 5}
1 1 21345 {2} {1, 3, 4, 5} T1
2 1 21345 {2} {1, 3, 4, 5}
3 2 42135 {4, 2} {1, 3, 5} T2
4 3 54213 {5, 4, 2} {1, 3} T3
5 3 45213 {4, 5, 2} {1, 3}
6 4 14523 {1, 4, 5, 2} {3} T
7 5 31452 {3, 1, 4, 5, 2} {∅}

where T is the time at which the deck is randomized and Ti is the first time the ith card is
lifted.

Before we give the rigorous proof, we must first define a probability distribution Q for
the random-to-top shuffle:

Q(π) =

{
1/n if π is the identity or one of the cycles (1 2 · · · i), 1 ≤ i ≤ n

0 otherwise
(30)

Note that in the proof of the mixing time for the riffle shuffle, they use a very particular
result regarding a-shuffles and b-shuffles to obtain the probability of the m repeated riffle
shuffles resulting in π. Since there is no such fact for random-to-top shuffles, we must repre-
sent repeated random-to-top shuffles using random walks. Hence we look at the probability
distribution Q∗m.

To measure the difference between two probability distributions Q1 and Q2 we use the
same total variation distance as in [3]:

||Q1 −Q2|| =
1

2

∑
π

|Q1(π)−Q2(π)|

Recall that Q∗m(g)→ U(g) = 1/|G| as m→∞. From this, we have that

||Q∗m − U || → 0 as m→∞
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Theorem 4.7. [1] Let d(m) = ||Q∗m − U ||. For the random-to-top shuffle, we have that:

d(n log n+ cn) ≤ e−c for all c ≥ 0, n ≥ 2 (31)

d(n log n− cnn)→ 1 as n→∞ for all cn →∞ (32)

Before we give the proof of Theorem 4.7 we must first give a few definitions and prove
some intermediate results.

Definition 4.8. Let G be a finite group, and let GN be the set of G-valued infinite sequences
g = (g1, g2, . . . ). A stopping rule T̂ is a function T̂ : G∞ → {1, 2, 3, . . . ;∞} such that if
T̂ (g) = j, then T̂ (h) = j for all h with hi = gi, i ≤ j. That is, T̂ tells us what to do at time
n, given a sequence g = (g1, g2, . . . ).

Definition 4.9. Let Q be a distribution on G, and let (Xm) be the associated random walk.
Given a stopping rule T̂ , the random time T = T̂ (X1, X2, . . . ) is a stopping time.

That is, the stopping time T is the stopping rule applied to a sequence of random variables
(X1, X2, . . . , Xn, . . . ) and is a numerical value (for example, a particular number of shuffles).
The decision to stop at n is only dependent on the first n variables (X1, . . . , Xn, . . . ) in the
sequence.

Definition 4.10. Call T a strong uniform time (for U) if for each m <∞,
P (T = m,Xm = g) does not depend on g for g ∈ G

Remark. (29) is equivalent to the following two statements:
(a) P (Xm = g|T = m) = 1/|G|, g ∈ G
(b) P (Xm = g|T ≤ m) = 1/|G|, g ∈ G

From Lemma 4.6 above, the stopping time T = Tn for the random-to-top shuffle is the
first time that |U | = 1. That is, Tn is the first time that the bottom card in the deck is
the last (and only) card yet to be lifted. It’s important to note that Tn = Tn−1, since, when
|U | = 1, the deck is in random order and when |U | = 0, the deck is also in random order,
but in no “more” of a random order. Hereafter we use T = Tn−1.

Lemma 4.11. [1] Let Q be a probability distribution on a finite group G. Let T be a strong
uniform time for Q. Then

d(m) = ||Q∗m − U || ≤ P (T > m) for all m ≥ 0

Proof. For any A ⊂ G

Q∗m(A) = P (Xm ∈ A)

=
∑
j≤m

P (Xm ∈ A, T = j) + P (Xm ∈ A, T > m)

=
∑
j≤m

U(A)P (T = j) + P (Xm ∈ A|T > m)P (T > m)

= U(A) + [P (Xm ∈ A|T > m)− U(A)]P (T > m)
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and so
Q∗m(A)− U(A) = [P (Xm ∈ A|T > m)− U(A)]P (T > m)

and therefore,
|Q∗m(A)− U(A)| ≤ P (T > m)

Lemma 4.12. “The Coupon Collector’s Problem”

Given n coupons, how many coupons do you need to draw, with replacement, before hav-
ing drawn each coupon at least once?

Let V denote the number of draws required until each coupon has been drawn at least
once. Then

P (V > n log n+ cn) ≤ e−c

for all c ≥ 0, n ≥ 1.

Proof. Let Vi be the number of draws until the ith distinct coupon is drawn. Then P (Vi) =
(n−(i−1))

n
, and we have

E(V ) = E(V1) + · · ·+ E(Vn)

=
1

P (V1)
+

1

P (V2)
+ · · ·+ 1

P (Vn)

=
n

n
+

n

n− 1
+ · · ·+ n

2
+
n

1

= n ·
( 1

n
+

1

n− 1
+ · · ·+ 1

2
+

1

1

)
= n ·

(
log n+ γ +

1

2n
+O

( 1

n2

))
= n log n+ nγ +

1

2
+O

( 1

n

)
where γ is the Euler-Mascheroni constant.

Now, let Zm
i be the event that coupon i is not drawn in the first m draws. Then we have

P (Zm
i ) =

(
1− 1

n

)m
≤ e

−m
n

for each i. From above, setting m = n log n+ cn for c ≥ 0 we have

P (V > m) ≤
∑
i

P (Zi) = n
(

1− 1

n

)m
≤ n · e

−m
n = e−c
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Proof of Theorem 4.7. To prove the result from (a), we show that T has the same probability
distribution as V from Lemma 4.12. Recall that Ti is the number of shuffles until the ith

card is lifted for the first time, and consider the following way we can write T :

T = (Tn−1 − Tn−2) + (Tn−2 − Tn−3) + · · ·+ (T2 − T1) + T1 (33)

When exactly i cards have been lifted at least once, the chance that the next card will
be lifted for the first time is n−i

n
. Therefore, Ti − Ti−1 has geometric distribution

P (Ti − Ti−1 = j) =
n− i
n

(
1− n− i

n

)j−1
(34)

for j ≥ 1. Similarly, we can write V as

V = (V − Vn−1) + (Vn−1 − Vn−2) + · · ·+ (V2 − V1) + V1 (35)

where, from before, Vi is the number of draws until i distinct coupons have been drawn at
least once. After i distinct coupons have already been drawn at least once, the probability
that the next coupon drawn will be drawn for the first time is n−i

n
, so the probability

distribution of Vi − Vi−1 is

P (Vi − Vi−1 = j) =
n− i
n

(
1− n− i

n

)j−1
(36)

for j ≥ 1. Since T and V have the same distribution, part (a) of Theorem 4.7 follows directly
from Lemma 4.12.

To establish the lower bound for part (b) of Theorem 4.7, we chose a set A for which
|Q∗m(A)− U(A)| is large, and use

d(m) = ||Q∗m − U || ≥ |Q∗m(A)− U(A)|

Suppose at time m = n log n− cnn, all but j cards have been lifted at least once. After
n − j cards have been lifted, we have |L | = n − j and |U | = j and the bottom j cards
will remain in their original relative order. Let Aj denote the set of deck configurations of n
cards where j cards (chosen uniformly at random) remain in their original relative order in
the last j positions of the deck. Then U(Aj) = 1/(n− j)!. We claim that

Q∗m(Aj)→ 1 as n→∞ (37)

We first note that Q∗m(Aj) ≥ P (Tn−1 − Tj−1 > m), where Tn−1 − Tj−1 is the time that
n − j cards have all been lifted for the first time. That is, the first time that |U | = j. If
n− j cards have not been lifted for the first time by time m, then the bottom j cards must
remain in their original relative order. Therefore, it suffices to show

P (Tn−1 − Tj−1 ≤ m)→ 0 as n→ 0 (38)

To do this, we use Chebyshev’s inequality:

P
(
|Z − EZ| ≥ a

)
≤ var(Z)

a2
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where Z is a random variable and a > 0 is any real number.

From (30) we know E(Ti − Ti−1) = n
n−i and var(Ti − Ti−1) =

(
n
n−i

)2(
1 − n−1

n

)
. Hence,

from (29) we have,

E(Tn−1 − Tj) =
n−2∑
i=j

n

n− i
= n log n+O(n)

var(Tn−1 − Tj) =
n−2∑
i=j

( n

n− i

)2(
1− n− i

n

)
= O(n2)

Applying Chebyshev’s inequality to Z = Tn−1 − Tj−1 we get the desired result.

5 Concluding Remarks

From the results presented above, we can see how mathematically “involved” just two
types of card shuffles are. It is also important to note that this paper does not include every
results regarding these two shuffles (see [13], [27], [28]). Furthermore, these are not the only
types of shuffles which have interesting results. Many other shuffling techniques, such as the
Faro shuffle and the top-to-random, also have many interesting mathematical results [10]
[19], and are just as mathematically “involved” as the ones presented in this paper.
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