University of Waterloo Department of C&O

PhD Comprehensive Examination in Cryptography Spring 2002 Examiners: A. Menezes, D. Stinson and E. Teske

 $\begin{array}{c} {\rm June~27,~2002} \\ 9:00~{\rm am} \; -- \; 12:00~{\rm pm} \\ {\rm MC~5158A} \end{array}$

Instructions

Answer any six of the seven questions.

Questions

1. Attempts to strengthen DES against exhaustive key search attacks

Recall that DES is a symmetric-key encryption scheme with a 56-bit key, and 64-bit plaintext and ciphertext blocks. Consider the following proposal for a new symmetric-key encryption scheme based on DES. The secret key for the new scheme is $k = (k_1, k_2)$, where $k_1 \in \{0, 1\}^{56}$ and $k_2 \in \{0, 1\}^{64}$ (so k is a 120-bit key). Let $m \in \{0, 1\}^{64}$ be a plaintext message. Then encryption is defined as follows:

$$E_k(m) = \mathrm{DES}_{k_1}(m \oplus k_2).$$

- (a) Show how this encryption scheme can be totally broken—that is, the secret key k can be recovered—by a known-plaintext attack using roughly 2^{56} DES encryption/decryption operations. Your attack should have little space requirements. You may assume that you have a moderate number of plaintext-ciphertext pairs $(m_i, c_i = E_k(m_i))$. Briefly justify why the number of such pairs you use is sufficient to uniquely determine the key with high probability.
- (b) Is the encryption scheme with encryption function $E_k(m) = \mathrm{DES}_{k_1}(m) \oplus k_2$ any more secure than DES? [Briefly justify your answer.]
- (c) Is the encryption scheme with encryption function $E_k(m) = \text{DES}_{k_1}(m \oplus k_2) \oplus k_3$ any more secure than DES? (Here, $k = (k_1, k_2, k_3)$ where $k_1 \in \{0, 1\}^{56}$ and $k_2, k_3 \in \{0, 1\}^{64}$.) [Briefly justify your answer.]

2. Hash Functions

Suppose $h_1: \{0,1\}^{2m} \to \{0,1\}^m$ is a collision resistant hash function.

- (a) Define $h_2: \{0,1\}^{4m} \to \{0,1\}^m$ as follows:
 - 1. Write $x \in \{0, 1\}^{4m}$ as $x = x_1 \parallel x_2$, where $x_1, x_2 \in \{0, 1\}^{2m}$.
 - 2. Define $h_2(x) = h_1(h_1(x_1) \parallel h_1(x_2))$.

Prove that h_2 is collision resistant.

- (b) For an integer $i \geq 2$, define a hash function $h_i : \{0,1\}^{2^{i_m}} \to \{0,1\}^m$ recursively from h_{i-1} , as follows:
 - 1. Write $x \in \{0,1\}^{2^{i_m}}$ as $x = x_1 \parallel x_2$, where $x_1, x_2 \in \{0,1\}^{2^{i-1}m}$.
 - 2. Define $h_i(x) = h_1(h_{i-1}(x_1) \parallel h_{i-1}(x_2))$.

Prove that h_i is collision resistant.

3. Carmichael numbers

Assume throughout this question that n is square-free (i.e., n is not divisible by the square of a prime). Then $n = p_1 \cdots p_\ell$, where p_1, \ldots, p_ℓ are distinct primes. Such an integer n is a Carmichael number if $a^{n-1} \equiv 1 \pmod{n}$ for all integers a that are relatively prime to n.

You may use the following facts in your solutions: (i) $a^{n-1} \equiv 1 \pmod{n}$ if and only if $a^{n-1} \equiv 1 \pmod{p_i}$ for all $i, 1 \leq i \leq \ell$; (ii) For every prime number p, there exists a primitive element mod p.

(a) Suppose that n is a Carmichael number. Prove that $p_i - 1$ divides n - 1 for all $i, 1 \le i \le \ell$.

- (b) Suppose that $p_i 1$ divides n 1 for all $i, 1 \le i \le \ell$. Then prove that n is a Carmichael number.
- (c) Prove that 561 is a Carmichael number.

4. Speeding up RSA decryption

Let (n,e) be Alice's RSA public key, and let d be her corresponding private key. Recall that the RSA encryption operation is $c=m^e \mod n$, while the RSA decryption operation is $m=c^d \mod n$. One way to speed up RSA decryption is to precompute $d_p=d \mod (p-1)$ and $d_q=d \mod (q-1)$. Then decryption of a ciphertext c can be performed by computing $m_p=c^{d_p} \mod p$ and $m_q=c^{d_q} \mod q$, and then finding $m, 0 \le m \le n-1$, such that

$$m \equiv m_p \pmod{p}$$

 $m \equiv m_q \pmod{q}$.

- (a) Describe a procedure (i.e., a formula) that Alice can use to compute m efficiently, given m_p and m_q .
- (b) Prove that m is the correct decryption of c. That is, prove that $m \equiv c^d \pmod{n}$.
- (c) Briefly justify the assertion that this method of decryption can speed up RSA decryption by approximately 75%, given that a modular exponentiation operation modulo n can be done in $O(\log n)^3$ bit operations and given that $p \approx q$.
- (d) Devise an algorithm which, on input n and e, factors n in $O(\min(d_p, d_q))$ steps. (A "step" is any operation whose running time is polynomial in $\log n$.) State any assumptions you may make. [This exercise shows that Alice should not try to speed up decryption by selecting d so that d_p and d_q are too small.]

5. Bit security of the Discrete Logarithm Problem

Let p be a prime with $p \equiv 3 \pmod{4}$. Let $\alpha \in \mathbb{Z}_p$ be a generator of \mathbb{Z}_p^* . The discrete logarithm problem in \mathbb{Z}_p^* is the following: given α and $\beta \in_R \mathbb{Z}_p^*$, find the integer a, $0 \le a \le p-2$, such that $\beta \equiv \alpha^a \pmod{p}$.

Let $L_1(\beta)$ denote the least significant bit of a. That is, $L_1(\beta) = 0$ if a is even, and $L_1(\beta) = 1$ if a is odd.

Let $L_2(\beta)$ denote the second least significant bit of a. That is, $L_2(\beta)=0$ if $a\equiv 0$ or $1\pmod 4$, and $L_2(\beta)=1$ if $a\equiv 2$ or $3\pmod 4$.

- (a) Let $\gamma \in \mathbb{Z}_p^*$ be a quadratic residue modulo p. Show that the two square roots of γ modulo p are $\pm \gamma^{(p+1)/4}$.
- (b) Show that $L_1(\beta)$ can be efficiently computed given p, α, β .
- (c) Prove that $L_1(\beta) \neq L_1(-\beta)$.
- (d) Suppose that you have an efficient algorithm A (an oracle) for computing $L_2(\beta)$ given p, α , β . Devise an efficient algorithm for solving the discrete logarithm problem. Briefly justify that your algorithm is *correct* and *efficient*.

6. Hash Functions and DSA

We recall the DSA signature scheme. The system parameters consist of a 1024-bit prime p, a 160-bit prime divisor q of p-1, and an element $g \in \mathbb{Z}_p^*$ of order q. SHA-1 is a 160-bit hash function. Alice's private key is $a \in_R [0, q-1]$, while her public key is $h = g^a \mod p$. To sign a message $M \in \{0, 1\}^*$, Alice does the following:

(i) Select $k \in_R [1, q - 1]$.

(ii) Compute m = SHA-1(M).

(iii) Compute $r = (g^k \mod p) \mod q$, and check that $r \neq 0$.

(iv) Compute $s = k^{-1} \{m + ar\} \mod q$, and check that $s \neq 0$.

(v) Alice's signature on M is (r, s).

To verify A's signature (r, s) on M, Bob does the following:

(i) Obtain an authentic copy of Alice's public key h.

(ii) Compute m = SHA-1(M).

(iii) Check that $1 \le r, s \le q - 1$. (iv) Compute $u_1 = ms^{-1} \mod q$ and $u_2 = rs^{-1} \mod q$.

(v) Accept iff $r = (g^{u_1}h^{u_2} \mod p) \mod q$.

Recall that a signature scheme is secure if it is existentially unforgeable by chosen-message attacks. It is *insecure* if it is not secure.

(a) Define what it means for SHA-1 to be preimage resistant.

(b) Define what it means for SHA-1 to be 2nd preimage resistant.

(c) Define what it means for SHA-1 to be collision resistant.

(d) Prove that DSA is insecure if SHA-1 is not preimage resistant.

(e) Prove that DSA is insecure if SHA-1 is not 2nd preimage resistant.

(f) Prove that DSA is insecure if SHA-1 is not collision resistant.

7. Duplicate Signatures

The Elliptic Curve Digital Signature Algorithm (ECDSA) is as follows: Let p be a prime, and let E be an elliptic curve defined over F_p . Let A be a point on E having prime order q, such that the Discrete Logarithm problem in $\langle A \rangle$ is infeasible. Let $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = Z_q^* \times Z_q^*$, and define

$$\mathcal{K} = \{ (p, q, E, A, m, B) : B = mA \},$$

where $0 \le m \le q-1$. The values p, q, E, A and B are the public key, and m is the private key. The signature for a message $x \in \mathcal{P}$ is computed as follows: For K = (p, q, E, A, m, B), and for a (secret) random number $k, 1 \le k \le q - 1$, define

$$sig_K(x,k) = (r,s),$$

where

$$kA = (u, v)$$

 $r = u \mod q$, and
 $s = k^{-1}(SHA-1(x) + mr) \mod q$.

(If either r=0 or s=0, a new random value of k should be chosen.)

(a) Suppose that x and x' are any two messages. Suppose that x is signed using random number k and x' is signed with random number $k' = -k \mod q$. Prove that $sig_K(x,k) = sig_K(x',k')$ if and only if SHA-1(x) + SHA-1(x') + $2mr \equiv 0 \pmod{q}$.

- (b) Two messages x and x' are said to have duplicate ECDSA signatures if SHA-1 $(x) \neq$ SHA-1(x') but $sig_K(x,k) = sig_K(x',k')$ for some integers k,k'. Suppose that the public key parameters p,q,E and A are fixed. Given any two messages x and x' such that SHA-1 $(x) \neq$ SHA-1(x'), show that it is possible for Alice to choose a private key m (and hence a corresponding public key B) so that x and x' have duplicate ECDSA signatures under the key p,q,E,A,m and B.
- (c) Suppose that Alice, say, signs message x with signature (r, s), and then later claims that she really signed the message x', where (r, s) is also a signature on x'. Show that an adversary can now easily compute Alice's secret key.
- (d) We have shown that Alice can choose her private key in such a way that she can later construct duplicate signatures on two messages x and x'. Does this property mean that the ECDSA is "insecure"? (Discuss)