University of Waterloo Department of C&O

PhD Comprehensive Examination in Cryptography Spring 2003 Examiners: A. Menezes and E. Teske

> July 2, 2003 1:00 pm — 4:00 pm MC 5158A

Instructions

Answer as many questions as you can. Complete answers are preferred over fragmented ones. Questions have equal value.

Questions

1. Chosen-plaintext attack on two-key Triple-DES

Recall that DES is a block cipher with key space $K = \{0, 1\}^{56}$, plaintext space $M = \{0, 1\}^{64}$, and ciphertext space $C = \{0, 1\}^{64}$. Encryption for two-key Triple-DES is defined as follows:

$$E_k(m) = DES_{k_1}(DES_{k_2}^{-1}(DES_{k_1}(m))),$$

where $k = (k_1, k_2)$, and $k_1, k_2 \in_R \{0, 1\}^{56}$ is the secret key. Design a chosen-plaintext attack on two-key Triple-DES that takes roughly 2^{56} steps. (A step is a DES encryption or decryption operation.) Provide an explanation of why your attack works, and a careful estimate of its space and time requirements. (Hint: your attack may need a lot of chosen plaintext/ciphertext pairs.)

2. Elementary number theory

- (a) Prove that if $p = 2^m + 1$ is prime, then m is a power of 2.
- (b) Suppose that $p=2^m+1$ is prime. Prove that any quadratic nonresidue is a generator of \mathbb{F}_p^* .
- (c) Suppose that $p=2^m+1$ is prime. Prove that 5 is a generator of \mathbb{F}_p^* , except in the case p=5.

3. Partial key-exposure in RSA

This exercise shows that if the encryption exponent in RSA is e=3, then the left half of the bits of d can be very easily computed. (More precisely, the possible values for the left half of the bits can be narrowed to one or two.)

Let n = pq where p and q are primes with $1 \le p < q < 2p$. Let integers e and d satisfy $1 < e, d < \phi(n)$ and $ed \equiv 1 \pmod{\phi(n)}$.

- (a) Prove that there exists an integer k satisfying $ed k\phi(n) = 1$ and $1 \le k < e$.
- (b) Let $\hat{d} = \lfloor \frac{kn+1}{e} \rfloor$. Prove that $|\hat{d} d| < 3\sqrt{n}$.
- (c) Prove that if e = 3 then k = 2.

4. Diffie-Hellman problem

This exercise shows that the hardness of the Diffie-Hellman problem does not depend on the choice of generator.

Let G be a (cyclic) group of prime order n > 2, and let α be a generator of G. We assume that the group operation in G can be computed in polynomial time. Recall that the Diffie-Hellman problem for G with respect to α (DHP $_{\alpha}$) is the following: given α^a and α^b , compute α^{ab} . In this question, you are given a polynomial-time algorithm A which solves DHP $_{\alpha}$.

- (a) Devise a polynomial-time algorithm which on input α^a and a positive integer k, outputs α^{a^k} .
- (b) Devise a polynomial-time algorithm which on input α^a (with $a \not\equiv 1 \pmod{n}$), outputs $\alpha^{a^{-1}}$.
- (c) Let β be a generator of G. Devise a polynomial-time algorithm for solving DHP $_{\beta}$ (i.e., given β^a and β^b , compute β^{ab}).

5. Security of the basic ElGamal public-key encryption scheme

Let G be a (cyclic) group of prime order n>2, and let α be a generator of G. We assume that the group operation in G can be computed in polynomial time. Recall that the Diffie-Hellman problem for G with respect to α (DHP $_{\alpha}$) is the following: given α^a and α^b , compute α^{ab} . The decision Diffie-Hellman problem for G with respect to α (DDHP $_{\alpha}$) is the following: given α^a , α^b and α^c , decide whether $c \equiv ab \pmod{n}$.

In the basic ElGamal public-key encryption scheme, Alice's private key is an integer $a \in [1, n-1]$, and her public key is $\beta = \alpha^a$. To encrypt a plaintext message $m \in G$ for Alice, Bob selects $k \in \mathbb{R}[1, n-1]$, and sends the ciphertext $C = (\alpha^k, m\beta^k)$ to Alice.

In the following, we consider ciphertext-only attacks on the basic ElGamal public-key encryption scheme. The attacker has knowledge of the group parameters, Alice's public key β , and one or more ciphertexts.

- (a) The ElGamal-decrypt problem is the following: Given a public key β and a ciphertext C, compute the corresponding plaintext. Prove that the ElGamal-decrypt problem is polynomial-time equivalent to DHP_{α} .
- (b) Prove that the semantic security of the basic ElGamal public-key encryption scheme (under ciphertext-only attack) is polynomial-time equivalent to $DDHP_{\alpha}$.
- (c) Is the basic ElGamal public-key encryption scheme semantically secure against chosen-ciphertext attacks? (Justify your answer.)

6. Elliptic curves

Let q be a power of an odd prime, $q \equiv 2 \pmod{3}$.

- (a) Prove that the mapping $x \mapsto x^3$ is a 1-1 map of \mathbb{F}_q to itself.
- (b) Consider the elliptic curve $E: y^2 = x^3 + b$ defined over \mathbb{F}_q . Prove that the number of points in $E(\mathbb{F}_q)$ is q+1.
- (c) Prove that $E(\mathbb{F}_q)$ is cyclic.

s ·