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Instructions

Answer as many questions as you can. Complete answers are preferred over fragmented ones. Questions
have equal value.

Questions

1. Hash functions

(a) Define what it means for a hash function to be collision resistant.
(b) Define what it means for a hash function to be second preimage resistant.

(c) Let E denote the family of encryption functions for the AES block cipher where plaintext
blocks, ciphertext blocks, and keys are each 128 bits in length. Define a hash function H :
{0,1}%56 — {0,1}'% by H(z,y) = E,(y). Here, z and y are 128-bit blocks, and E,(y) denotes
the encryption of the plaintext block y using the key z. Is H collision resistant? (Justify your
answer.)

(d) Is the hash function in (c) second preimage resistant? (Justify your answer.)

2. Elementary number theory
Let p be an odd prime and let n > 1 be a positive integer. Recall that the multiplicative group /e
is cyclic. Suppose that the integer g is a generator of Z;, and let i = (p + 1)g. Prove that at least
one of g or h is a generator of Zg.
Hint: First prove that at least one of g?~! or h?~1 can be expressed in the form 1+ kp where & is
an integer that is not divisible by p.

3. Bit security of the Discrete Logarithm Problem
Let p be an odd prime, and let g be a generator of Z,. Consider the following three problems:
DLP: Given p, g, and x € Zj, determine the integer a € [0, p — 2] such that z = g (mod p). (We
write a = log, z.)
DLP-LSB: Given p, g, and = € Zj, determine A(z) where

_J 1, iflog,z is even,
Alz) = { 0, if log,z is odd.

DLP-MSB: Given p, g, and z € Zj, determine B(z) where

B(z) = 1, f0<logyz < (p—1)/2
10, i (p-1)/2<logz < (p—2).

(a) Prove that DLP-MSB <p DLP.

(Recall that A <p B means that problem A polynomial-time reduces to problem B.)
(b) Prove that DLP <p DLP-MSB.
(c) Does DLP <p DLP-LSB? (Justify your answer.)



4. Fault analysis attack on the RSA signature scheme
Suppose that a smart card is using the Chinese Remainder Theorem for RSA signature generation.
That is, if (n, €) is the RSA public key and d is the corresponding private key, then signing a message
m is performed as follows:

i) Compute M = H(m).
ii) Compute s, = M% mod p and s; = M% mod ¢, where d, = d mod (p — 1) and d, = d mod
(¢—-1).
iil) Find s, 0 < s < n -1, such that

{ s=s, (mod p)
s=sg (mod q).

(a) Prove that s is the correct signature of m (that is, prove that s = H(m)% mod n).

(b) Explain why it might be advantageous to compute s using the procedure described above in-
stead of computing s = M? mod n directly using the repeated square-and-multiply algorithm.

(c) Suppose now that an adversary can somehow induce the smart card to compute s, incorrectly
(and sq correctly) while signing a message. Let s’ be a resulting (incorrect) signature on m.
Suppose that the adversary has access to the public key (n,e) and also the signed message
(m, s"). Show how the adversary can efficiently factor n.

(d) Suggest a (realistic and practical) method for preventing this attack.

5. Provable security
Recall that in the Full-Domain Hash (FDH) RSA signature scheme, an entity with public key (n, €)
and private key d generates a signature s on a message m by computing s = H (m)d mod n. Here
H:{0,1} — [0,n — 1] is a hash function. Prove that if finding eth roots modulo n is intractable,
and if H is a random function, then FDH RSA is existentially unforgeable by an adversary who
can mount an adaptive chosen-message attack.

6. Elliptic curves and finite fields
a) Recall that the Trace function Tr : Fom — g is defined by Tr(a) = 7.7:1 a?. Prove that
Y i=0

exactly half of the elements in Fam have trace 0 (and the other half have trace 1).

(b) Let o € Fam. Prove that the equation z? + z = « has a solution z € Fom if and only if
Tr(a) = 0.

(c) Let E : y% +y = 2° be an elliptic curve over Fom where m is an odd positive integer. Prove
that #E(Fom) = 27 + 1.



