University of Waterloo Department of C&O

PhD Comprehensive Examination in Cryptography Summer 2011 Examiners: D. Jao and E. Teske-Wilson

 $\begin{array}{c} {\rm June~14,~2011} \\ {\rm 9:00~am~-~12:00~pm} \\ {\rm MC~6005} \end{array}$

Instructions

Answer as many questions as you can. Complete answers are preferred over fragmented ones.

Questions

1. Hash functions

- (a) Give an example of a hash function $H: \{0,1\}^* \to \{0,1\}^*$ that is collision resistant but not preimage resistant. Justify your choice!
- (b) Define what it means for a pair of permutations f_0, f_1 on S to be claw-free.
- (c) Let $p, q \equiv 3 \pmod{4}$, and let n = pq. Let S denote the set of squares modulo n, coprime with n. Let $a_0, a_1 \in_R S$, and define the functions $f_0 \colon S \to S$ and $f_1 \colon S \to S$ by $f_0(x) = a_0 x^2 \mod n$ and $f_1(x) = a_1 x^2 \mod n$. Then f_0 and f_1 are permutations on S (you do not need to show this). Show that under the assumption that factoring n is computationally infeasible, f_0 and f_1 is a claw-free pair of permutations.
- (d) Using f_0 and f_1 , construct a collision-free hash function $H: \{0,1\}^* \to S$.

2. Block Ciphers

Recall that a Feistel cipher has a round function of the following form

$$L^{i} = R^{i-1}$$

$$R^{i} = L^{i-1} \oplus f(R^{i-1}, K_{i})$$

The plaintext is $L^0||R^0$ and the ciphertext is $L^n||R^n$.

- (a) What properties does f need to satisfy in order for encryption to be invertible? Justify.
- (b) Describe the decryption algorithm.

3. Elementary Number Theory

Throughout this question, n is an odd integer, and a is an integer, $1 \le a < n$.

(a) Assume n is prime, and write $n-1=2^km$ with m odd. Assume $a^{2^im}\neq -1$ mod n for all $0\leq i\leq k$.

Prove that $a^{2^i m} \equiv 1 \mod n$ for all $0 \le i \le k$.

(b) Let n be prime. Prove that

$$\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \bmod n. \tag{1}$$

(c) Now let n be composite, again write $n-1=2^km$ with m odd. Assume $\gcd(a,n)=1$. Recall that n is called a strong pseudoprime to the base a if $a^m \equiv 1 \mod n$ or there exists i, $0 \le i < k$ such that $a^{2^im} \equiv -1 \mod n$.

Further recall that n is called an Euler pseudoprime to the base a if (1) from part (b) holds.

Prove that for $n \equiv 3 \mod 4$, n is a strong pseudoprime to the base a if and only if n is an Euler pseudoprime to the base a.

4. Provable Security

The Blum-Goldwasser public key cryptosystem is given as follows.

- Key generation: Choose distinct primes p and q congruent to p and q. The public key is p and the private key is p, q.
- Encryption: A message m consists of a single bit. To encrypt m, choose a random $x \in \mathbf{QR}_n$ and compute

i.
$$b = LSB(x)$$

ii.
$$c = b \oplus m$$

iii.
$$y = x^2 \pmod{n}$$

The ciphertext is (c, y).

Prove that the cryptosystem is **IND-CPA**. State any necessary assumptions.

5. Pseudo-random Bit Generators

Let (n, e) be an RSA public key, and let d be the corresponding RSA private key.

Let $f: \mathbb{Z}_n \to \mathbb{Z}_n$ be defined by $f(x) = x^e \mod n$.

Let $B: \mathbb{Z}_n \to \{0,1\}$ be defined by

$$B(x) = \begin{cases} 1 & \text{if } x^d \bmod n \text{ is odd} \\ 0 & \text{if } x^d \bmod n \text{ is even.} \end{cases}$$

Clearly, B(x) is easy to compute given x and $f^{-1}(x)$ (since $f^{-1}(x) = x^d \mod n$). It can be shown (and you may assume) that B(x) is hard to compute given only x.

- (a) Define (informally) what it means for a PRBG G to pass the next bit test.
- (b) Describe a cryptographically secure PRBG G which takes as seed random $x_0 \in \mathbb{Z}_n$ and uses f and B above.
- (c) Prove that the generator G passes the next bit test.

6. Elliptic Curves

Consider the Koblitz curve defined over \mathbb{F}_2 :

$$E: y^2 + xy = x^3 + x^2 + 1$$
.

- (a) Show that $\#E(\mathbb{F}_{2^r})$ is even for all $r \geq 1$.
- (b) Show that if r > 4 and $\#E(\mathbb{F}_{2^r}) = 2p$ where p is a prime number, then r must be prime.