University of Waterloo Department of C&O

PhD Comprehensive Examination in Cryptography Summer 2016 Examiners: D. Jao and A. Menezes

 $\begin{array}{c} {\rm June~13,~2016} \\ {\rm 1:30~pm~-4:30~pm} \\ {\rm MC~6486} \end{array}$

Instructions

- Answer as many questions as you can.
- You are *not* expected to answer all 8 questions.
- Complete answers are preferred over fragmented ones.
- Some questions may require additional assumptions, such as complexity-theoretic assumptions. State any additional assumptions that you require.
- Justify all answers.

Questions

1. Hash functions

In the triangle of the three properties of a hash function:

- collision resistant
- preimage resistant
- second-preimage resistant

enter six symbols $\in \{\Longrightarrow, \not\Longrightarrow\}$ to indicate which property implies the other and which does not.

Prove **three** out of the six directions.

2. Elementary number theory

Suppose that $p = 2^{2^k} + 1$ is prime, where $k \ge 1$.

- (a) Prove that any quadratic nonresidue modulo p is a generator of \mathbb{F}_{p}^{*} .
- (b) Hence show that 7 is a generator of \mathbb{F}_p^* .

3. Elementary number theory

Let n be an RSA modulus. Does n always, sometimes, or never have a primitive root? (Recall that a primitive root modulo n is an element of order $\phi(n)$ in the multiplicative group of units \mathbb{Z}_n^* .)

4. **RSA**

Suppose that textbook RSA is used to encrypt a random 56-bit DES key k without padding; that is, the value of k as an integer is used as an RSA plaintext. Given the corresponding RSA ciphertext, give a (classical) algorithm that, with high probability, recovers the key k in substantially fewer than 2^{56} operations.

Hint: Use the fact that a random integer 56-bit integer factors into a product of two integers less than 2^{29} with high probability.

5. Discrete logarithm problem

Let $p=2^{2^k}+1$ be a prime number. Describe and analyze a polynomial-time algorithm for solving the discrete logarithm problem in \mathbb{Z}_p^* . (Recall that the DLP in \mathbb{Z}_p^* is the following: given p, a generator g of \mathbb{Z}_p^* , and $h \in \mathbb{Z}_p^*$, find the integer $\ell \in [0, p-2]$ such that $h=g^\ell \mod p$.)

6. Message Authentication Codes

Recall the definition of CBC-MAC:

Algorithm 1 CBC-MAC

Input: An *n*-block message $x = x_1 || \cdots || x_n$ and a secret key k.

- 1: IV $\leftarrow 00 \cdots 0$
- 2: $y_0 \leftarrow IV$
- 3: for $i \leftarrow 1$ to n do
- 4: $y_i \leftarrow \text{Encrypt}(k, y_{i-1} \oplus x_i)$
- 5: end for

Output: Tag y_n

- (a) Is CBC-MAC with one-block inputs existentially unforgeable under a chosen-message attack (EUF-CMA)?
- (b) Is CBC-MAC with variable-length inputs existentially unforgeable under a chosen-message attack (EUF-CMA)?

7. Identification schemes

Let G be a cyclic group of prime order p with generator g. Suppose the verifier is given $\beta = g^{\alpha}$ for some randomly selected $\alpha \in \mathbb{Z}_p$. Consider the zero-knowledge proof of knowledge of α in Figure 1.

Prover
$$r \in_{R} \mathbb{Z}_{p}$$
 $(x,y) = (g^{r}, g^{\alpha+r}) \xrightarrow{(x,y)} y \stackrel{?}{=} x \cdot \beta$ $(x,y) = (b^{r}, g^{\alpha+r}) \xrightarrow{b} b \in_{R} \{0,1\}$ $z = \begin{cases} r & (b=0) \\ \alpha+r & (b=1) \end{cases}$ $z = \begin{cases} x & (b=0) \\ y & (b=1) \end{cases}$

Figure 1: Zero-knowledge proof of knowledge of α

- (a) Show that the proof is zero-knowledge for an honest verifier.
- (b) Show that a cheating prover can succeed with probability 1/2.
- (c) Describe how to modify the protocol so that the prover's cheating probability is reduced to negligible levels.

8. Provable security

Consider the Zheng-Seberry public-key encryption scheme (1993):

Public parameters: A cyclic group G, a generator g of G, and two random oracles

$$H_1: \{0,1\}^t \to \{0,1\}^n$$

 $H_2: G \to \{0,1\}^{t+n}$.

Key generation: Choose a private key $x \in \mathbb{Z}$. The corresponding public key is $h = g^x$.

Encryption: To encrypt $m \in \{0,1\}^t$, choose $y \in \mathbb{Z}$ and compute

$$Y = g^{y}$$

$$c = H_{2}(h^{y}) \oplus (m||H_{1}(m)).$$

The ciphertext is (Y, c).

Decryption: Compute $c \oplus H_2(Y^x)$. If the leftmost t bits of the result map to the rightmost n bits under H_1 , then output the leftmost t bits; otherwise output NULL.

Show that the Zheng-Seberry scheme is not **IND-CCA2**.

(IND-CCA2 means "indistinguishable against adaptive chosen-ciphertext attack". In this attack, the adversary selects two plaintexts m_0 , m_1 , is then given the encryption c of m_b (where $b \in \mathbb{R} \{0,1\}$), and has to determine b with probability significantly greater than $\frac{1}{2}$. The adversary is also given access to a decryption oracle to which it can present any ciphertext for decryption except for the challenge ciphertext c itself.)