University of Waterloo Department of C\&O

PhD Comprehensive Examination in Cryptography Summer 2018
Examiners: D. Jao and A. Menezes
June 18, 2018
1:00 pm - 4:00 pm
MC 5417

Instructions

- Answer as many questions as you can.
- You are not expected to answer all 7 questions.
- Complete answers are preferred over fragmented ones.
- Some questions may require additional assumptions, such as complexity-theoretic assumptions. State any additional assumptions that you require.
- Justify all answers.

Questions

1. Block ciphers

Recall that DES is a block cipher with key space $K=\{0,1\}^{56}$, plaintext space $M=$ $\{0,1\}^{64}$, and ciphertext space $C=\{0,1\}^{64}$.
(a) Let \bar{m} denote the bitwise complement of a bit string m (i.e., $\bar{m}=m \oplus 11 \cdots 1$). By examining the description of DES, one can see that if $c=\mathrm{DES}_{k}(m)$ then $\bar{c}=$ $\mathrm{DES}_{\bar{k}}(\bar{m})$. Can you use this property of DES to (slightly) improve the running time of exhaustive key search under a chosen-plaintext attack?
(b) Recall that Triple-DES has key space $K=\{0,1\}^{168}$. A plaintext $m \in\{0,1\}^{64}$ is encrypted under key $k=\left(k_{1}, k_{2}, k_{3}\right)$ (where $\left.k_{1}, k_{2}, k_{3} \in\{0,1\}^{56}\right)$ as follows:

$$
E_{k}(m)=\mathrm{DES}_{k_{3}}\left(\mathrm{DES}_{k_{2}}\left(\operatorname{DES}_{k_{1}}(m)\right)\right) .
$$

Describe a known-plaintext attack on Triple-DES that is significantly faster than exhaustive key search. Estimate the time and space requirements of your attack.

2. Hash functions

Let q be a prime, and let G be a (multiplicatively written) group of order q. Let g and h be randomly selected elements from $G \backslash\{1\}$. Consider the function $H_{g, h}: \mathbb{Z}_{q} \times \mathbb{Z}_{q} \longrightarrow G$ defined by $H_{g, h}:(x, y) \mapsto g^{x} h^{y}$. Henceforth we will denote $H_{g, h}$ by H.
(a) Show that for any $k \in G$, there are exactly q distinct solutions $(x, y) \in \mathbb{Z}_{q} \times \mathbb{Z}_{q}$ to the equation $g^{x} h^{y}=k$.
(b) Prove that if the discrete logarithm problem in G is intractable then H is collision resistant.
(c) Is H preimage resistant?

3. Elementary number theory

(a) Let $n \geq 3$ be an integer. Suppose that there exists an integer a such that $a^{n-1} \equiv 1$ $(\bmod n)$ and $a^{(n-1) / q} \not \equiv 1(\bmod n)$ for all prime divisors q of $n-1$. Prove that n is prime.
(b) The Fermat numbers are $F_{k}=2^{2^{k}}+1$ for $k \geq 1$. Prove that for $k \geq 2, F_{k}$ is prime if and only if $5^{\left(F_{k}-1\right) / 2} \equiv-1\left(\bmod F_{k}\right)$.
(It may help to remember Euler's Theorem: If p is an odd prime, then $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}$ $(\bmod p)$.)

4. Number-theoretic algorithms

(a) An instance of CHREM (Chinese Remainder Problem) is a pair of distinct primes p and q, and two integers $a \in[0, p-1]$ and $b \in[0, q-1]$ The problem is to determine the unique integer $x \in[0, n-1]$ (where $n=p q)$ such that $x \equiv a(\bmod p)$ and $x \equiv b$ $(\bmod q)$. Design (and analyze) a polytime algorithm for CHREM.
(b) Let $n=p q$, where p and q are distinct primes satisfying $p \equiv q \equiv 3(\bmod 4)$. Let FACTOR be the problem of factoring n. Let SQUARE-ROOT be the problem of finding one square root of $a \in Q R_{n}$. Prove that SQUARE-ROOT \leq_{P} FACTOR. (Recall that $Q R_{n}$ is the set of quadratic residues modulo n. Recall also that $A \leq_{P} B$ means that problem A polynomial-time reduces to problem B.)

5. RSA

(a) Suppose that Alice's RSA public key is $(n=143, e=7)$. Determine her private key d.
(b) Let (n, e) be an RSA public key, where $n=p q$, and e is an integer with $1<e<\phi(n)$ and $\operatorname{gcd}(e, \phi(n))=1$. It is known that the number of plaintexts $m \in[0, n-1]$ satisfying $m^{e} \equiv m(\bmod n)$ is

$$
[1+\operatorname{gcd}(e-1, p-1)] \cdot[1+\operatorname{gcd}(e-1, q-1)] .
$$

Such a plaintext message m is called an unconcealed message since its RSA ciphertext is equal to m itself.
Prove that there is at least one value of $e, 1<e<\phi(n), \operatorname{gcd}(e, \phi(n))=1$, such that $m^{e} \equiv m(\bmod n)$ for all $m \in[0, n-1]$.

6. Elliptic Curves

Let p be an odd prime satisfying $p \equiv 2(\bmod 3)$. Consider the elliptic curve $E: Y^{2}=X^{3}+b$ defined over $\mathbb{F}_{p}(b \neq 0)$.
(a) Prove that the mapping $x \mapsto x^{3}$ is a bijection on \mathbb{F}_{p}.
(b) Prove that the number of points in $E\left(\mathbb{F}_{p}\right)$ is $p+1$.
(c) Let $R=(x, y)$ be a point in $E\left(\mathbb{F}_{p}\right)$. Given y, explain how to compute x efficiently.

7. ECDSA

Recall the ECDSA signature scheme. The domain parameters consist of a 256 -bit prime p, an elliptic curve E defined over \mathbb{Z}_{p} with prime $n=\# E\left(\mathbb{Z}_{p}\right)$, and a point $P \in E\left(\mathbb{Z}_{p}\right)$ with $P \neq \infty$. Alice's private key is $a \in_{R}[1, n-1]$ and her public key is $A=a P$. To sign a message $M \in\{0,1\}^{*}$, Alice does the following:
(i) Select a per-message secret $k \in_{R}[1, n-1]$.
(ii) Compute $m=$ SHA256(M).
(iii) Compute $R=k P$. Let $r=x(R) \bmod n$ and check that $r \neq 0$. (r is the x-coordinate of R, reduced modulo n.)
(iv) Compute $s=k^{-1}(m+a r) \bmod n$, and check that $s \neq 0$.
(v) Alice's signature on M is (r, s).

To verify A 's signature (r, s) on M, Bob does the following:
(i) Obtain an authentic copy of Alice's public key A.
(ii) Check that $1 \leq r, s \leq n-1$.
(iii) Compute $m=\operatorname{SHA} 256(M)$.
(iv) Compute $u_{1}=m s^{-1} \bmod n$ and $u_{2}=r s^{-1} \bmod n$.
(v) Compute $V=u_{1} P+u_{2} A$ and let $v=x(V) \bmod n$.
(vi) Accept if and only if $v=r$.
(a) Define what it means for a signature scheme to be secure.
(b) Suppose now that an adversary knows a message M such that SHA256(M) $=0$. Show that the adversary can efficiently compute a valid signature for M. (The adversary knows the domain parameters and Alice's public key A, but does not have access to a signing oracle.)

