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Instructions

• Answer as many questions as you can.

• You are not expected to answer all 7 questions.

• Complete answers are preferred over fragmented ones.

• Some questions may require additional assumptions, such as complexity-theoretic assump-
tions. State any additional assumptions that you require.

• Justify all answers.

Questions

1. Block ciphers
Recall that DES is a block cipher with key space K = {0, 1}56, plaintext space M =
{0, 1}64, and ciphertext space C = {0, 1}64.

(a) Let m denote the bitwise complement of a bit string m (i.e., m = m ⊕ 11 · · · 1).
By examining the description of DES, one can see that if c = DESk(m) then c =
DESk(m). Can you use this property of DES to (slightly) improve the running time
of exhaustive key search under a chosen-plaintext attack?

(b) Recall that Triple-DES has key space K = {0, 1}168. A plaintext m ∈ {0, 1}64 is
encrypted under key k = (k1, k2, k3) (where k1, k2, k3 ∈ {0, 1}56) as follows:

Ek(m) = DESk3(DESk2(DESk1(m))).

Describe a known-plaintext attack on Triple-DES that is significantly faster than
exhaustive key search. Estimate the time and space requirements of your attack.

2. Hash functions
Let q be a prime, and let G be a (multiplicatively written) group of order q. Let g and h
be randomly selected elements from G \ {1}. Consider the function Hg,h : Zq × Zq −→ G
defined by Hg,h : (x, y) 7→ gxhy. Henceforth we will denote Hg,h by H.

(a) Show that for any k ∈ G, there are exactly q distinct solutions (x, y) ∈ Zq × Zq to
the equation gxhy = k.

(b) Prove that if the discrete logarithm problem in G is intractable then H is collision
resistant.

(c) Is H preimage resistant?
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3. Elementary number theory

(a) Let n ≥ 3 be an integer. Suppose that there exists an integer a such that an−1 ≡ 1
(mod n) and a(n−1)/q 6≡ 1 (mod n) for all prime divisors q of n − 1. Prove that n is
prime.

(b) The Fermat numbers are Fk = 22
k

+ 1 for k ≥ 1. Prove that for k ≥ 2, Fk is prime if
and only if 5(Fk−1)/2 ≡ −1 (mod Fk).
(It may help to remember Euler’s Theorem: If p is an odd prime, then

(
a
p

)
≡ a(p−1)/2

(mod p).)

4. Number-theoretic algorithms

(a) An instance of CHREM (Chinese Remainder Problem) is a pair of distinct primes p
and q, and two integers a ∈ [0, p− 1] and b ∈ [0, q − 1] The problem is to determine
the unique integer x ∈ [0, n− 1] (where n = pq) such that x ≡ a (mod p) and x ≡ b
(mod q). Design (and analyze) a polytime algorithm for CHREM.

(b) Let n = pq, where p and q are distinct primes satisfying p ≡ q ≡ 3 (mod 4). Let
FACTOR be the problem of factoring n. Let SQUARE-ROOT be the problem of
finding one square root of a ∈ QRn. Prove that SQUARE-ROOT ≤P FACTOR.
(Recall that QRn is the set of quadratic residues modulo n. Recall also that A ≤P B
means that problem A polynomial-time reduces to problem B.)

5. RSA

(a) Suppose that Alice’s RSA public key is (n = 143, e = 7). Determine her private key
d.

(b) Let (n, e) be an RSA public key, where n = pq, and e is an integer with 1 < e < φ(n)
and gcd(e, φ(n)) = 1. It is known that the number of plaintexts m ∈ [0, n − 1]
satisfying me ≡ m (mod n) is

[1 + gcd(e− 1, p− 1)] · [1 + gcd(e− 1, q − 1)].

Such a plaintext message m is called an unconcealed message since its RSA ciphertext
is equal to m itself.

Prove that there is at least one value of e, 1 < e < φ(n), gcd(e, φ(n)) = 1, such that
me ≡ m (mod n) for all m ∈ [0, n− 1].

6. Elliptic Curves

Let p be an odd prime satisfying p ≡ 2 (mod 3). Consider the elliptic curve E : Y 2 = X3+b
defined over Fp (b 6= 0).

(a) Prove that the mapping x 7→ x3 is a bijection on Fp.

(b) Prove that the number of points in E(Fp) is p+ 1.

(c) Let R = (x, y) be a point in E(Fp). Given y, explain how to compute x efficiently.
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7. ECDSA
Recall the ECDSA signature scheme. The domain parameters consist of a 256-bit prime
p, an elliptic curve E defined over Zp with prime n = #E(Zp), and a point P ∈ E(Zp)
with P 6=∞. Alice’s private key is a ∈R [1, n− 1] and her public key is A = aP . To sign
a message M ∈ {0, 1}∗, Alice does the following:

(i) Select a per-message secret k ∈R [1, n− 1].
(ii) Compute m = SHA256(M).
(iii) Compute R = kP . Let r = x(R) mod n and check that r 6= 0.

(r is the x-coordinate of R, reduced modulo n.)
(iv) Compute s = k−1(m+ ar) mod n, and check that s 6= 0.
(v) Alice’s signature on M is (r, s).

To verify A’s signature (r, s) on M , Bob does the following:

(i) Obtain an authentic copy of Alice’s public key A.
(ii) Check that 1 ≤ r, s ≤ n− 1.
(iii) Compute m = SHA256(M).
(iv) Compute u1 = ms−1 mod n and u2 = rs−1 mod n.
(v) Compute V = u1P + u2A and let v = x(V ) mod n.
(vi) Accept if and only if v = r.

(a) Define what it means for a signature scheme to be secure.

(b) Suppose now that an adversary knows a message M such that SHA256(M) = 0. Show
that the adversary can efficiently compute a valid signature for M . (The adversary
knows the domain parameters and Alice’s public key A, but does not have access to
a signing oracle.)
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