University of Waterloo Department of C&O

PhD Comprehensive Examination in Cryptography Summer 2017 Examiners: D. Jao and A. Menezes

 $\begin{array}{c} {\rm July\ 13,\ 2017} \\ {\rm 1:00\ pm\ --4:00\ pm} \\ {\rm MC\ 4044} \end{array}$

Instructions

- Answer as many questions as you can.
- You are *not* expected to answer all 7 questions.
- Complete answers are preferred over fragmented ones.
- Some questions may require additional assumptions, such as complexity-theoretic assumptions. State any additional assumptions that you require.
- Justify all answers.

Questions

1. Symmetric-key encryption

The original DES block cipher is limited to a 56-bit key and 64-bit plaintext/ciphertext blocks. The DES-X block cipher, proposed by Ron Rivest, uses a 184-bit key (k, k_1, k_2) where $k \in \{0, 1\}^{56}$ and $k_1, k_2 \in \{0, 1\}^{64}$. The encryption of a plaintext $m \in \{0, 1\}^{64}$ is given by

$$E(m) = \mathrm{DES}_k(m \oplus k_1) \oplus k_2,$$

where $\mathrm{DES}_k(m)$ denotes the DES-encryption of a 64-bit plaintext block m with 56-bit secret key k.

- (a) Describe the decryption procedure.
- (b) Suppose that the XOR with k_1 is omitted, i.e.

$$E(m) = \mathrm{DES}_k(m) \oplus k_2$$

where the key (k, k_2) is now 120 bits. Describe a chosen-ciphertext attack that recovers the secret key using roughly 2^{56} DES operations.

2. Hash functions

- (a) Define what it means for a hash function to be *collision resistant*.
- (b) Define what it means for a hash function to be preimage resistant.
- (c) Define what it means for a hash function to be second-preimage resistant.
- (d) Let $G: \{0,1\}^{2n} \to \{0,1\}^n$ and $H: \{0,1\}^{2n} \to \{0,1\}^n$ be two hash functions. Define the function $F: \{0,1\}^{2n} \to \{0,1\}^n$ by F(x) = H(G(x),G(x)). (Here, the comma "," denotes concatenation.) Prove that if G and H are collision resistant, then F is also collision resistant.
- (e) Suppose that $f:\{0,1\}^{n+r}\to\{0,1\}^n$ is a preimage resistant function. Define $H:\{0,1\}^{2(n+r)}\to\{0,1\}^n$ as follows. Given $x\in\{0,1\}^{2(n+r)}$, write

$$x = x_L || x_R$$
 where $x_L, x_R \in \{0, 1\}^{n+r}$;

here, | denotes concatenation. Then define

$$H(x) = f(x_L \oplus x_R).$$

Prove that H is not second-preimage resistant.

3. Elementary number theory

Note: Parts (a) and (b) are unrelated.

- (a) Let p be a prime, $n \in \mathbb{N}$, and $q = p^n$. Prove that the finite field \mathbb{F}_q has q-2 generators if and only if q-1 is a Mersenne prime.
- (b) Let $m \geq 3$ be an integer. Prove that if a is a quadratic residue modulo m, and $ab \equiv 1 \pmod{m}$, then b is also a quadratic residue. Now let p be a prime of the form p = 4k + 3. Prove that the product of all the quadratic residues modulo p is congruent to 1.

4. Integer factorization

- (a) Describe the random squares method for factoring a number n that is not a prime or a prime power. You are not expected to analyze the running time of the algorithm. (Note: In Stinson's book, the algorithm is called "Dixon's random squares algorithm". In Koblitz's book, the algorithm is called "Factor base algorithm".)
- (b) Explain the trade-off that dictates the optimal size of the factor base.

5. RSA signatures

Recall that in the Full-Domain Hash (FDH) RSA signature scheme, an entity with public key (n, e) and private key d generates a signature s on a message m by computing $s = H(m)^d \mod n$. Here $H: \{0, 1\}^* \longrightarrow [0, n-1]$ is a hash function.

- (a) Show that FDH RSA is insecure against passive adversaries if H is not preimage resistant.
- (b) Prove that if finding eth roots modulo n is intractable, and if H is a random function, then FDH RSA is existentially unforgeable by an adversary who can mount an adaptive chosen-message attack.

6. Discrete logarithm and Diffie-Hellman problems

Let G be a group of prime order n > 2 generated by α .

The notation $A \leq_P B$ means that problem A polynomial-time reduces to problem B.

- (a) Recall that discrete logarithm problem in G with respect to α (DLP $_{\alpha}$) is the following: given $\gamma \in G$, find the integer $\ell \in [0, n-1]$ that satisfies $\gamma = \alpha^{\ell}$. Now, let β be another generator of G. Prove that DLP $_{\alpha} \leq_{P} \text{DLP}_{\beta}$. (This proves that hardness of the DLP does not depend on the choice of generator.)
- (b) Recall that the Diffie-Hellman Problem (DHP) is the following: given $\alpha^x, \alpha^y \in G$, compute α^{xy} . The problem INV is the following: given $\alpha^x \in G$, compute $\alpha^{x^{-1}}$. Prove that INV \leq_P DHP.
- (c) The problem SQUARE is the following: given $\alpha^x \in G$, compute α^{x^2} . Prove that DHP \leq_P SQUARE.

7. Elliptic curves Let $E: Y^2 = X^3 + aX + b$ be an elliptic curve defined over \mathbb{Z}_p , where p > 3 is prime.

(a) Prove the formula

$$#E(\mathbb{Z}_p) = p + 1 + \sum_{x=0}^{p-1} \left(\frac{x^3 + ax + b}{p} \right)$$

where the expression inside the summation is the Legendre symbol.

(b) Now suppose that $x^3 + ax + b$ splits into three distinct linear factors modulo p. Show that $E(\mathbb{Z}_p)$ is not cyclic.