University of Waterloo Department of Combinatorics & Optimization

PhD Comprehensive Examination in Cryptography Spring 2019 Examiners: D. Jao and D. Stebila

 $\begin{array}{c} {\rm June~27,~2019} \\ {\rm 1:00~pm~-4:00~pm} \\ {\rm MC~6460} \end{array}$

Instructions

- Answer as many questions as you can.
- You are not expected to answer all questions.
- Complete answers are preferred over fragmented ones.
- Some questions may require additional assumptions, such as complexity-theoretic assumptions. State any additional assumptions that you require.
- Justify all answers unless otherwise stated.

Questions

1. Elementary Number Theory

Let n = pq be an RSA modulus. Prove the following:

$$\prod_{x \in \mathbb{Z}_n^*} x \equiv 1 \pmod{n}.$$

2. Hash functions

Recall that AES is a block cipher with message space $\{0,1\}^{128}$ and key space $\{0,1\}^{128}$. Let x and y denote bitstrings of length 128. Which of the following hash functions $H_i: \{0,1\}^{256} \to \{0,1\}^{128}$, if any, are preimage resistant? No justification is needed except that a lack of preimage resistance must be justified.

- (i) $H_1(x,y) = AES_x(y) \oplus y$.
- (ii) $H_2(x, y) = AES_y(y) \oplus x$.
- (iii) $H_3(x, y) = AES_y(x) \oplus y$.

3. Symmetric-key encryption

Let E be a block cipher where both the block length and key size are 64 bits. Consider the "improved" block cipher whose encryption function is given by $m \mapsto c = E_{k_0}(m \oplus k_1)$ where m is the 64-bit plaintext, c is the 64-bit ciphertext, k_0 is a 64-bit string, k_1 is a 64-bit string, and the key is the 128-bit string (k_0, k_1) .

- (a) Give the decryption algorithm for the "improved" cipher.
- (b) Describe how to break the "improved" cipher by brute force in much less than 2¹²⁸ time using a known plaintext attack.

4. Cryptanalysis of RSA

Suppose that Alice and Bob agree to generate and share a common RSA modulus n = pq for use in RSA encryption. Alice chooses an encryption exponent e_a and corresponding decryption exponent d_a , and Bob chooses an encryption exponent e_b and corresponding decryption exponent d_b . Suppose furthermore $gcd(e_a, e_b) = 1$. Show that that an adversary who acquires a pair of ciphertexts $c_a = m^{e_a} \mod n$ and $c_b = m^{e_b} \mod n$ corresponding to a single message m encrypted to Alice and Bob respectively can recover the plaintext message m efficiently.

5. Elliptic curves

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve defined over \mathbb{Z}_p , where p > 3 is prime.

(a) Prove the formula

$$\#E(\mathbb{Z}_p) = p + 1 + \sum_{r=0}^{p-1} \left(\frac{x^3 + ax + b}{p} \right),$$

where the expression inside the summation is the Legendre symbol.

(b) If furthermore b = 0 and $p \equiv 3 \pmod{4}$, show that $\#E(\mathbb{Z}_p) = p + 1$.

6. Provable security

The Boneh-Franklin cryptosystem is defined as follows.

Public parameters: A cryptographic pairing $e: G \times G \to G_T$, and two elements $g, h \in G$, each of which generates the cyclic group G.

Key generation: Choose $\alpha \in \mathbb{Z}$. The public key is g^{α} . The private key is h^{α} .

Encryption: Given $m \in \{0,1\}^k$, the encryption of m is $(g^r, e(g^\alpha, h^r) \oplus m)$ for random $r \in \mathbb{Z}$. Here k is the number of bits used to represent an element of G_T .

Decryption: Given a ciphertext (c_1, c_2) , the plaintext is $c_2 \oplus e(c_1, h^{\alpha})$.

- (a) Show that the Boneh-Franklin scheme is **OW-CPA** under the Bilinear Diffie-Hellman (BDH) assumption: Given g, g^{α}, g^{r} , and h, it is infeasible to compute $e(g, h)^{\alpha r}$.
- (b) Show that the Boneh-Franklin scheme is **IND-CPA** under the Decisional Bilinear Diffie-Hellman (DBDH) assumption.

Figure 1: OW-CPA and IND-CPA definitions.