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Instructions

• Answer as many questions as you can.

• You are not expected to answer all questions.

• Complete answers are preferred over fragmented ones.

• Some questions may require additional assumptions, such as complexity-theoretic assump-
tions. State any additional assumptions that you require.

• Justify all answers unless otherwise stated.

Questions

1. Elementary Number Theory
Let n = pq be an RSA modulus. Prove the following:∏

x∈Z∗
n

x ≡ 1 (mod n).

2. Hash functions
Recall that AES is a block cipher with message space {0, 1}128 and key space {0, 1}128.
Let x and y denote bitstrings of length 128. Which of the following hash functions
Hi : {0, 1}256 → {0, 1}128, if any, are preimage resistant? No justification is needed ex-
cept that a lack of preimage resistance must be justified.

(i) H1(x, y) = AESx(y)⊕ y.

(ii) H2(x, y) = AESy(y)⊕ x.

(iii) H3(x, y) = AESy(x)⊕ y.

3. Symmetric-key encryption
Let E be a block cipher where both the block length and key size are 64 bits. Consider
the “improved” block cipher whose encryption function is given by m 7→ c = Ek0(m⊕ k1)
where m is the 64-bit plaintext, c is the 64-bit ciphertext, k0 is a 64-bit string, k1 is a
64-bit string, and the key is the 128-bit string (k0, k1).

(a) Give the decryption algorithm for the “improved” cipher.

(b) Describe how to break the “improved” cipher by brute force in much less than 2128

time using a known plaintext attack.

4. Cryptanalysis of RSA
Suppose that Alice and Bob agree to generate and share a common RSA modulus n = pq
for use in RSA encryption. Alice chooses an encryption exponent ea and corresponding
decryption exponent da, and Bob chooses an encryption exponent eb and corresponding
decryption exponent db. Suppose furthermore gcd(ea, eb) = 1. Show that that an adversary
who acquires a pair of ciphertexts ca = mea mod n and cb = meb mod n corresponding to
a single message m encrypted to Alice and Bob respectively can recover the plaintext
message m efficiently.
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5. Elliptic curves
Let E : y2 = x3 + ax+ b be an elliptic curve defined over Zp , where p > 3 is prime.

(a) Prove the formula

#E(Zp) = p+ 1 +

p−1∑
x=0

(
x3 + ax+ b

p

)
,

where the expression inside the summation is the Legendre symbol.

(b) If furthermore b = 0 and p ≡ 3 (mod 4), show that #E(Zp) = p+ 1.

6. Provable security
The Boneh-Franklin cryptosystem is defined as follows.

Public parameters: A cryptographic pairing e : G×G→ GT , and two elements g, h ∈ G,
each of which generates the cyclic group G.

Key generation: Choose α ∈ Z. The public key is gα. The private key is hα.

Encryption: Given m ∈ {0, 1}k, the encryption of m is (gr, e(gα, hr) ⊕ m) for random
r ∈ Z. Here k is the number of bits used to represent an element of GT .

Decryption: Given a ciphertext (c1, c2), the plaintext is c2 ⊕ e(c1, hα).

(a) Show that the Boneh-Franklin scheme is OW-CPA under the Bilinear Diffie-Hellman
(BDH) assumption: Given g, gα, gr, and h, it is infeasible to compute e(g, h)αr.

(b) Show that the Boneh-Franklin scheme is IND-CPA under the Decisional Bilinear
Diffie-Hellman (DBDH) assumption.

OW-CPAAEnc

1 : (pk, sk)←$KGen(1λ)

2 : m←$M

3 : c←$Enc(pk,m)

4 : m′←$A(1λ, pk, c)

5 : return m
?
= m′

IND-CPAAEnc

1 : (pk, sk)←$KGen(1λ)

2 : b←$ {0, 1}
3 : (m0,m1)←$A(1λ, pk)

4 : c←$Enc(pk,mb)

5 : b′←$A(1λ, pk, c)

6 : return b
?
= b′

Figure 1: OW-CPA and IND-CPA definitions.
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