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Abstract

Introduced by Birkhoff and Lewis in 1946 [4] and formalized by

Tutte in 1991 [10], the Birkhoff-Lewis Equations give surprising rela-

tions between some specialized chromatic polynomials of planar graphs.

This essay fuses the applied, computational approach of Birkhoff and

Lewis with the abstract, existence approach of Tutte in order to

present a clear introduction to these equations and their uses. We

will discuss the derivation of these equations and explore a number of

different forms they can take.

1 Reducibility and the Four Colour Theorem

We motivate our discussion with the same topic that motivated the creation

of the Birkhoff-Lewis Equations: The Four Colour Theorem.

Definition. A colouring of a graph G is an assignment of colours to the

vertices where no two adjacent vertices receive the same colour. A colouring

that chooses its colours from a set of λ colours is called a λ-colouring.

1



The most famous theorem in graph colouring is the Four Colour Theorem:

Theorem 1 (4CT). Any planar graph can be 4-coloured.

We are going to study the Birkhoff-Lewis equations in the context of

something called reducibility, with an eye towards the proof of the 4CT. Both

Appel and Haken’s original proof (see [1] and [2]) and Robertson, Saunders,

Seymour and Thomas’ revised proof ([9]) use the same basic approach to

proving the 4CT, with the key tool being this concept of reducibility. So

what exactly are we “reducing”?

Definition. Call a planar graph G a minimal counter-example if every

graph with fewer vertices than G is four colourable, but G itself needs at least

five colours. Since we measure size in terms of vertices, we may assume G

is a triangulation (i.e., we can always drop all possible edges into a minimal

counter-example to obtain a triangulated minimal counter-example).

The approach used in the proofs mentioned above prove the 4CT by prov-

ing there is no minimal counter-example (and hence no counter-example).

Given a planar graph G, suppose we replace some subgraph of G, say

H, with a smaller graph H ′ to form G′. Suppose further that we prove

that G having no 4-colouring implies G′ has no 4-colouring. We are now

certain that G is not a minimal counter-example. We have reduced G to

a smaller counter-example. We say that G is reducible and we call H a

reducible configuration. Note that defined this way, any graph which

is reducible (i.e., contains a reducible configuration) cannot be a minimal
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counter-example. Also note that we use the term configuration here much

more loosely than in the proof of the 4CT. For our purposes this is sufficient,

and has the benefit of letting our terminology line up better with the actual

4CT proof.

In a nutshell, both proofs of the four colour theorem prove that every

potential minimal counter-example contains a reducible configuration. We

get our hands on potential minimal counter-examples through connectivity:

Definition. A graph G is k-connected if deleting any set of fewer than k

vertices of G results in a connected graph. We call a set of l vertices that

result in a graph which is not connected an l-separation.

We have the following property:

Lemma 2 (See [3]). Any minimal counter-example G is 5-connected, and

the only 5-separations are the five neighbours of a vertex of degree 5. We

sum up these two properties by saying G is internally 6-connected.

If we could show every internally 6-connected graph contained a reducible

configuration, we would be in possession of a proof for the 4CT.

Definition. Call a set U of configurations unavoidable if every internally

6-connected graph contains an element of U as a subgraph.

Sketch of the 4CT proof.

1. Define a set U of configurations and prove it is unavoidable.
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2. Prove that every element of U is reducible.

Naturally this is an outrageous abstraction of the actual proof. Even in the

“simplified” proof of Robertson et al. there are 633 configurations in U . The

question of how to find U—and how to prove its unavoidability—is addressed

in appendix A.

So what are the Birkhoff-Lewis equations, and how do they relate to

reducibility? Consider the following approach to reducibility:

Suppose we have a minimal counter-example G. If we could prove G is

reducible, having assumed nothing more than that it is a minimal counter-

example, we would have a contradiction which proves the 4CT. We could—if

we were so inclined—take a separating cycle C and note that the subgraph

H1 obtained by deleting everything outside C is four-colourable by our as-

sumption that G is a minimal counter-example. Similarly, the subgraph H2

obtained by deleting everything inside G is four-colourable.

Knowing nearly nothing about G (except that it is a minimal counter-

example with a separating cycle C), we can say for sure that any two colour-

ings of H1 and H2 disagree on how they colour the vertices in C—otherwise

we could just glue those two colourings together to obtain a colouring of G.

Since colourings can be permuted, the specific colours involved are not im-

portant to this gluing process; what matters is whether the two colourings

partition the vertices of C the same way.

The Birkhoff-Lewis equations relate to counting such colouring partitions.
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To elaborate, consider the case where C has length 4. Figure 1 lists the

possible partitions that can be induced by 4-colourings of the inside or outside

of C.

X1 = ({v1}, {v2}, {v3}, {v4})

X2 = ({v1, v3}, {v2}, {v4})

X3 = ({v2, v4}, {v1}, {v3})

X4 = ({v1, v3}, {v2, v4})

•

••

•
v1 v2

v3v4

Fig 1. Partitions of C induced by 4-colourings

Let Ki be the number of ways to 4-colour a graph bounded by C in such

a way that partitions the vertices of C into Xi. We will prove later that the

equation

K1 − K2 − K3 + 2K4 = 0, (1)

holds for any planar graph bounded by C, and hence must hold for the

inside and outside of C in G. This is a Birkhoff-Lewis equation—an

invariant relation between numbers of partition inducing colourings of a cycle

C bounding an embedding of a planar graph G. We use this Birkhoff-Lewis

equation to prove the following reducibility result:

Proposition 1. A minimal counter-example does not have a 4-separation.

Proof. Suppose to the contrary we have a minimal counter-example G with

a 4-separation. We know that G is a triangulation, so our 4-separation forms

a cycle C. Assume G is embedded in the plane. Let H in be the subgraph
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of G obtained by deleting all the vertices embedded outside C. Define Hout

analogously.

Let Kin
i and Kout

i be Ki of equation (1) for H in and Hout respectively.

By our hypothesis that G is a minimal counter-example, both H in and Hout

are 4-colourable. In terms of our Ki’s, this means

Kin
1 + Kin

2 + Kin
3 + Kin

4 ≥ 1 (2)

Kout
1 + Kout

2 + Kout
3 + Kout

4 ≥ 1. (3)

We must also have

Kin
i Kout

i = 0, i = 1, . . . , 4 (4)

else we could glue together two colourings to obtain a 4-colouring of G.

Furthermore, equation (1) tells us that if three Ki’s are zero for either

H in or Hout, then they all are. Together with (2),(3) and (4), this implies

that exactly two Ki’s are zero for both H in and Hout.

Since the roles of “in” and “out” are completely interchangeable (by

stereographic projection for example) we suppose wlog that Kout
1 = 0. Since

the Ki’s are nonnegative, Kout
4 6= 0 for otherwise this would make all of the

Ki’s for Hout zero, contradicting (3). We also suppose wlog that Kout
3 = 0

since the proof is completely symmetric in the case where Kout
2 = 0.
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Now we have that the Ki’s for Hout relating to

X1 = {1, 2, 3, 4} (5)

X3 = {24, 1, 3} (6)

are zero. This implies that there are no 4-colourings of Hout that assign

v1 and v3 different colours (note that they are in the same cell in both

X2 and X4). Hence if we replace H in in G with

•

••

•
v1 v2

v3v4

Fig 2. A replacement for H in

we obtain a smaller graph with no 4-colourings. Contradiction.

So how do we go about obtaining equations such as (1)? In fact, why

should (1) hold for all graphs? And can we find similar equations for graphs

embedded in cycles of any length? Yes. There is some work to be done

though—we cannot even begin to explore relationships between such Ki’s

until we lay the groundwork for counting colourings: the chromatic polyno-

mial.
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2 Chromatic Polynomials

If investigating the existence of a λ-colouring in a graph G is a natural

question, another natural, more general, question might be how many λ-

colourings of G are there? If the answer to this more general question is

nonzero, then the answer to the existence question is yes. One of the tools

used to take this approach is the following:

Definition. Let P (G; λ) be the number of λ-colourings of G. We call P (G; λ)

the chromatic polynomial (or chromial) of G, a name which is justified

below in Proposition 3.

The canonical first examples of chromatic polynomials are the empty

graph Kn and the complete graph Kn.

•

•

••

•

λ

λ

λλ

λ

•

•

••

•

λ

λ − 1

λ − 2λ − 3

λ − 4

Fig 3. Counting colourings of K5 and K5

In Kn, we have λ choices of colours for each vertex with no restrictions since

there are no edges, hence

P (Kn, λ) = λn.

Now, define λ[k] = λ(λ − 1)(λ − 2) . . . (λ − k + 1). Then, for Kn, each colour
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assigned to a vertex leaves one less colour available to all the other vertices,

hence

P (Kn, λ) = λ[n].

Normally we cannot look at a graph and easily determine its chromatic poly-

nomial. Deciding whether or not a given graph G admits a λ-colouring is in

general NP-Complete, so computing the number of λ-colourings is obviously

hard. We are not however entirely without tools.

Definition. We use G\e to denote the graph obtained by deleting edge

e in G and G/e to denote the graph obtained by contracting edge e in G.

Proposition 2 (Chromatic recurrence).

P (G; λ) = P (G\e; λ) − P (G/e; λ).

Proof. A λ-colouring of G\e either assigns the endpoint of e different colours,

or assigns the endpoints of e the same colours. Since a λ-colouring of G\e

assigns the endpoints of e different colours if and only if it is a λ-colouring

of G, the number of such colourings is P (G; λ).

Similarly, a λ-colouring of G\e assigns the endpoints of e the same colours

if and only if it is a λ-colouring of G/e, hence the number of such colourings

is P (G/e; λ). We now have

P (G\e; λ) = P (G; λ) + P (G/e; λ),
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which, after rearrangement, yields the result.

We compute P (C4; λ) here as an example. By symmetry, no matter which

edge of C4 we choose, deleting it yields P4, the path on four vertices, and

contracting it yields K3, a triangle.

•

••

•
e

C4

•

••

•

P4 = C4\e

•

••

K3 = C4/e

Fig 4. Elements of a chromatic recurrence.

A little thought shows that P (P4; λ) = λ(λ − 1)3, and our work above for

complete graphs gives P (K3; λ) = λ(λ−1)(λ−2). By Proposition 2 we have

P (C4; λ) = P (P4; λ) − P (K3; λ)

= λ(λ − 1)3 − λ(λ − 1)(λ − 2)

= λ(λ − 1)(λ2 − 3λ + 3).

We close up this introduction to chromatic polynomials by proving they

are, in fact, polynomials. A slightly deeper, though still accessible, treatment

of chromatic polynomials can be found in [12].

Proposition 3. For any graph G, P (G; λ) is a polynomial in λ.

Proof. We proceed by induction on the number m of edges of G. For m = 0,

we have P (G; λ) = P (Kn; λ) = λn. For m ≥ 1, we can choose an edge e to

10



contract and delete to obtain

P (G; λ) = P (G\e; λ) − P (G/e; λ). (7)

by Theorem 2. By induction both terms on the right of (7) are polynomials,

and hence their difference is too.

3 The Birkhoff-Lewis Equations

We now derive the Birkhoff-Lewis equations following Tutte’s work in both

[10] and [11]. We generalize the bounding cycle C from the second section

in the following manner: We consider a graph G embedded in the plane,

bounded by a circle C and let Sn denote the vertices {v1, v2, . . . , vn} of G

on C, which we assume are indexed in cyclic order. The Birkhoff-Lewis

equations are then built out of special chromatic polynomials of G which

depend on partitions of Sn.

Definition. A partition X of Sn is a set of non-null disjoint sets (called

parts) whose union is Sn.

For example, suppose we have a planar embedding of a graph G bounded

by a circle C, and five vertices of G lie on C. We would then enumerate the

five vertices {v1, v2, v3, v4, v5} in cyclic order and let them be S5.
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G

C

•

••

v1

•

•
v2

•

•

••

•

v4v5

• v3

Fig 5. A planar graph meeting C in S5

Partitions of Sn such as

X = ({v1, v3}, {v2, v4}, {v5})

will be abbreviated in the following (hopefully self-explanatory) manner for

clarity and ease:

X = (13, 24, 5).

We can now define two new chromatic polynomials depending on such

partitions:

Definition. The constrained chromial of G with respect to X and λ,

denoted K(G, X; λ), is the number of ways to properly colour G with λ

colours subject to the following two conditions:

1. Vertices in the same part of X must receive the same colour.
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2. Vertices in different parts of X must receive different colours.

Definition. The free chromial of G with respect to X and λ, denoted

F (G, X; λ), is the number of ways to properly colour G with λ colours subject

to only the first condition above.

To formally define the Birkhoff-Lewis we also need the concept of a planar

partition (also often called a noncrossing partition):

Definition. A partition X of Sn is a planar partition if when the vertices

of Sn are labeled with increasing integers in cyclic order there do not exist

four vertices with a < b < c < d where a and c are in one part but b and d

are in another.

Geometrically, X is planar if the convex hulls of each part of X do not

intersect.

S5

C

•
•

•

•

••

•

•

•

v1

v2

v3

v4

v5v6

v7

v8

v9

Fig 6. X = (134, 2, 5689, 7) is planar.
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Definition. We will call an embedding of a planar graph G a C-embedding

if G is embedded such that it is bounded by C, with n vertices touching C

to form Sn.

Now we are ready for the stars of this paper.

Main Theorem. For any partition X of Sn and any planar partition Y

of Sn, there is a rational function E(X, Y ) in λ so that, for any planar graph

G and any C-embedding of G,

K(G, X; λ) =
∑

Y planar

E(X, Y )F (G, Y ; λ). (8)

Furthermore, the coefficients E(X, Y ) depend only on the partitions X and Y .

Definition. A Birkhoff-Lewis equation is any equation of the form (8)

and any new relations between free and constrained chromials derived from

such equations.

A moment needs to be set aside here to highlight how the absurdly mys-

terious and beautiful fact tacked on as a “furthermore” in this theorem de-

serves underscoring. Equations of the form (8) relate free and constrained

chromatic polynomials in general, independent of any graphs. Cautis and

Jackson [6] dubbed these coefficients Tutte’s chromatic invariants. If we

can find the coefficients for any graph meeting C at n vertices, we can use

those coefficients for every graph meeting C at n vertices. Our proof will in
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fact take this approach: We will derive a complete set of coefficients

{E(X, Y ) : Xis any partition of Sn, Y is a planar partition of Sn} (9)

from graphs which are essentially empty, then prove they work for all planar

graphs using an analogue of the chromatic recurrence (Proposition 2).

4 Proving the Main Theorem

Unfortunately, essentially empty graphs are rather more complicated than the

empty graph. Since we are working with free and constrained chromials the

chromatic recurrence does not extend immediately. A little thought should

convince the reader that if we contract any edge with one endpoint not on

Sn, then the analogue of the chromatic recurrence holds. However, if we

contract an edge between two vertices of Sn, we no longer have an Sn in our

smaller graph and the statement no longer makes sense (since our free and

constrained chromials are defined based on the existence of Sn).

We salvage the chromatic recurrence with the following:

Definition. A contractive edge is a relation between between vertices

u and v that demands that any colouring assign both u and v the same

colour.

Then we redefine G/e to mean replace edge e with a contractive edge.

Note how this definition ensures that contractive edges and traditional con-
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traction have the same impact on λ-colourings, and hence the chromatic

recurrence still holds with G/e redefined in this way.

Now that we have ensured that Sn is intact, the proof of the chromatic

recurrence can be extended to free and constrained chromials to obtain the

following:

Remark 3 (Generalized chromatic recurrence).

F (G, X; λ) = F (G\e, X; λ) − F (G/e, X; λ) (10)

K(G, X; λ) = K(G\e, X; λ) − K(G/e, X; λ). (11)

Proof. A λ-colouring of G\e with respect to a partition X, whether free or

constrained, still splits into two cases: a λ-colouring of G with respect X, or

a λ-colouring of G/e with respect to X. Therefore, the proof of the chromatic

recurrence extends.

Definition. Call a C-embedded graph G basic if all of its edges are con-

tractive, and all of its components have at least one vertex on C.

With a little work we will find a set of coefficients of the form (9) for all

basic graphs. Then we will be in a position to show that same set works for

all planar graphs. First we obtain explicit formulas for free and constrained

chromials of basic graphs.

The key definition required to compute these chromials is the following:

Definition. The induced partition of a basic graph G is the partition ZG

16



of Sn where each part is the set of vertices of Sn contained in one component

of G.

G

C

•

•

••

•

•
v2

v3

v4v5

v6

v1

•

•

•

••

•

Fig 7. A basic graph with ZG = (12, 3, 45, 6)

(Dotted lines indicate contractive edges)

Note that since G is planar, ZG is always planar. Furthermore, we can

always view a planar partition as the induced partition of some basic graph.

The computation of the free chromial of G relies of the following two

concepts, whose significance becomes clear in the next lemma.

Definition. A partition X refines a partition Y if every part of X is con-

tained in some part of Y .

Definition. The chromatic join of two partitions X and Y is the partition

that both X and Y refine which has the most parts. We denote it by X ∨Y .

For example, if X = (1, 25, 3, 4, 6) and Y = (1, 23, 46, 5), then X ∨ Y =

(1, 235, 46). Also, let h(X) be the number of parts in X.
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Definition. Let R(X, Y ) = 1 if Y refines X and zero otherwise.

Lemma 4. If G is a basic graph and X is a partition of Sn, then

F (G, X; λ) = λh(X∨ZG) (12)

K(G, X; λ) = R(X, ZG)λ[h(X)]. (13)

Proof of (12). In a free colouring of G with respect to X each cell of X must

be monochromatic by definition of a free colouring, and each cell of ZG must

be monochromatic by virtue of being contractive. More succinctly: Any two

vertices in the same cell of either X or ZG must receive the same colour.

Hence there are h(X ∨ ZG) sets of vertices which must be coloured, with λ

choices of colours for each. The number of ways to do this is

P (Kh(X∨ZG); λ) = λh(X∨ZG).

Proof of (13). If ZG does not refine X, then there are two vertices u and v in

different cells of X which are in the same component of G. Being in different

cells of X means that u and v receive different colours in any constrained

colouring of G. Being in the same component of G means that u and v

receive the same colour in any constrained colouring of G (since the edges of

G are contractive). Hence there are no such colourings and (13) holds.

If ZG does refine X, then whenever the parts of X are monochromatic,
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so are the components of G, hence all we need to worry about is assigning

each part of X a unique colour. The number of ways to do this is

P (Kh(X); λ) = λ[h(X)].

We now have all the pieces needed to prove the main theorem.

Proof of the Main Theorem. If we enumerate the partitions of Sn

as {X1, X2, . . . , Xt}, then following (8) we can write out the Birkhoff-Lewis

equations for a basic graph G explicitly using (12) and (13):

R(Xi, ZG)λ[h(Xi)] =
∑

Y planar

E(Xi, Y )λh(Y ∨ZG) i = 1, . . . , t.

We want a set of coefficients E = {E(X, Y ) : X, Y planar partitions of Sn}

that work for each set of Birkhoff-Lewis equations of this form—i.e., no mat-

ter which basic G that ZG arises from, the above equations must hold. Since

ZG is necessarily planar, we can remove G from the equations by letting

{Z1, . . . , Zs} be the set of planar partitions and noting that what we want is

a set of coefficients E such that

R(Xi, Zj)λ[h(Xi)] =
∑

Y planar

E(Xi, Y )λh(Y ∨Zj) (14)

holds for all pairs (Xi, Zj)
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This system of equations can be recast as a matrix equation by defining

matrices D, R, E and M as follows:

Dij =















λ[h(Xi)] if i = j

0 otherwise

(15)

Rij = R(Xi, Zj) (16)

Eij = E(Xi, Zj) (17)

Mij = λh(Zi∨Zj) (18)

Then DR = EM captures the complete system of equations of the form (14).

Now, Tutte proves that M is always nonsingular over the polynomials

[10]. (In the corollary following we address individual values of λ.) Hence

E = DRM−1 provides promised rational functions for the coefficients for the

Birkhoff-Lewis equations for every basic G.

We now prove that the coefficients E = DRM−1 also form the Birkhoff-

Lewis equations for all other planar graphs. Before diving into an induction

on the edges of G that are not contractive, there is one more detail to be

taken care of concerning graphs with only contractive edges: what if there

are contractive components that do not meet C?

Claim. E provides the coefficients for any graph whose edgeset is entirely

contractive.

Proof of claim. Let G be a graph whose edges are all contractive. Let H
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be the subgraph of G which is basic (i.e., The subgraph consisting of all

components of G which touch C). Let k be the number of components of

G\H. Let X be an arbitrary partition of Sn. For each free or constrained

colouring of H with respect to X there are λk ways to colour G\H (since

colouring k contractive components with no partition restrictions can be done

in P (Kk, λ) = λk ways). Hence we have

F (G, X; λ) = λkF (H, X; λ) (19)

and

K(G, X; λ) = λkK(H, X; λ). (20)

Now, using (19) and (20) we can transform the Birkhoff-Lewis equations

for H into the Birkhoff-Lewis equations for G without affecting the coeffi-

cients. We already have

K(H, X; λ) =
∑

Y planar

E(X, Y )F (H, Y ; λ)

for the basic graph H, which we multiply by λk to obtain

λkK(H, X; λ) =
∑

Y planar

E(X, Y )λkF (H, Y ; λ)
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and hence

K(G, X; λ) =
∑

Y planar

E(X, Y )F (G, Y ; λ),

which proves the claim.

We proceed by induction using the preceding claim as our base case. Let

G be a graph with m > 0 regular edges, and let e be such an edge. By

induction we have

K(G\e, X; λ) =
∑

Y

E(X, Y )F (G\e, X; λ) (21)

K(G/e, X; λ) =
∑

Y

E(X, Y )F (G/e, X; λ). (22)

Adding these together yields

K(G\e, X; λ) + K(G/e, X; λ) =
∑

Y

E(X, Y ) (F (G\e, X; λ) + F (G/e, X; λ))

Then, using (10) and (11), this becomes

K(G, X; λ) =
∑

Y

E(X, Y )F (G, Y ; λ)

and hence E provides the coefficients for every C-embedding of every planar

graph.

As a bonus, our proof provides a recipe for computing Birkhoff-Lewis
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equations: Compute E = DRM−1 to obtain the coefficients for the Birkhoff-

Lewis equations. Furthermore, this computation would work even if we do

not take all t partitions as our Xi’s—any subset will do. Together with the

following strengthening of the theorem, we obtain the concrete Birkhoff-Lewis

equations which we seek.

Corollary 5. If λ is not a zero of the first n Chebyshev polynomials, then

E(X,Y) can be evaluated at λ in the main theorem.

Proof. In [5], Cautis and Jackson give the determinant of M for Sn as a

product of the first n Chebyshev Polynomials to a particular power.

5 Shrinking the System

The previous section provides a recipe for obtaining the Birkhoff-Lewis equa-

tions. There are a few problems though. For starters, the systems quickly

become huge. In the cases of S4, S5, and S6 the number of planar partitions

are 14, 42, 132 respectively. Since these numbers define dimensions of M , we

see that even just in the case of the 6-ring the computation is rather horrid

in practice (though none of these are impossible: even without this succinct

approach, the 4-ring and the 5-ring were worked out by Birkhoff and Lewis

in their original paper [4], and the 6-ring was later tackled by Hall and Lewis

[7]).

Since we’re developing the Birkhoff-Lewis equations in the context of the

four-colour theorem, we may assume that any graph we embed inside C is
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a triangulation, so no matter what vertices touch C to form Sn they must

form Cn—a cycle of length n—which follows the cyclic order of Sn. We call

this special cycle Cn.

Having Cn means that we have a lot more information about the free and

constrained chromials of the graphs we are interested in—namely that any

chromial for a partition which contains an edge in one of its parts is zero.

Above, our basic graphs are graphs whose edges are all contractive and

whose components all meet C in at least one vertex. We can obtain a much

smaller system by considering a more complex base case: call a graph semi-

basic if it is the union of a basic graph and Cn.

G

Cn = C6

•

•

••

•

•
v2

v3

v4v5

v6

v1

•

•

•

••

•

Fig 8. A semi-basic graph with ZG = (12, 3, 45, 6)

If we could find coefficients E for all semi-basic graphs, then we could use

the same inductive steps as the proof of the main theorem to conclude that E

was the set of coefficients for any planar graph bounded by Cn. Naturally this

is a weaker existence proof than the one above, but the recipe that arises from
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this form of the proof will prove to be computationally more manageable.

Remark 6. Computing E for semi-basic graphs provides the coefficients for

any planar graph bounded by Cn

Proof. A semi-basic graph can be obtained from any planar graph G bounded

by Cn by contracting and deleting every edge of G except those of Cn. Hence,

the induction in the proof of the Main Theorem can be modified to use

semi-basic graphs as its base case.

Our approach earlier relied on having explicit expressions for evaluating

free and constrained chromials of basic graphs. We will achieve something

similar for semi-basic graphs.

Definition. A partition X will be called simple if no part of X contains an

edge of the bounding Cn.

Let R(X, Y ) = 1 if Y refines X and both X and Y are simple partitions,

and 0 otherwise.

Lemma 7. If G is a semi-basic graph and X is a partition of Sn, then

F (G, X; λ) = R(X, ZG)F (X ∨ ZG, Cn; λ) (23)

K(G, X; λ) = R(X, ZG)λ[h(X)]. (24)

Proof of (23). If X is not simple, then F (G, X; λ) = 0 on the left since an

edge in some part of X has endpoints which cannot receive the same colour.

R(X, ZG) = 0 ensures we also get zero on the right.
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If X is simple, we are again in a position where any two vertices in

the same cell of either X or ZG must receive the same colour. Hence a free

colouring of G respecting X must be a free colouring of G respecting X∨ZG.

Then, since ZG captures the only impact G\Cn has on colouring—i.e.,

the requirement that its contractive components be monochromatic, we have

that a colouring is a free colouring of G with respect to X ∨ ZG if and only

it is a free colouring of Cn with respect to X ∨ ZG.

Proof of (24). If X is not simple, then as above K(G, X; λ) = 0 on the left,

and R(X, ZG) = 0 ensures we also get zero on the right.

If X is simple, then a colouring is a constrained colouring of G if and only

if it is a colouring of G\Cn (which is a basic graph) since adjacent vertices

of C are in different parts of X. Therefore, by (13) we have

K(G, X; λ) = R(X, ZG)λ[h(X)].

Since R(X, Y ) = R(X, Y ) for simple partitions, this completes the proof.

With these expressions for the free and constrain chromials in hand we

can state our goal in a way similar to (14): we want a set of coefficients E

such that

R(Xi, Zj)λ[h(Xi)] =
∑

Y planar

E(Xi, Y )F (Y ∨ Zj, Cn; λ) (25)

holds for all pairs (Xi, Zj) of partitions with Zj planar.
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From here we can see that any time either Xi or Zj is not simple, this

equation is the trivial statement 0 = 0 and hence can be ignored. Then

(25) need only consider pairs (Xi, Zj) of simple partitions. This yields a

much smaller system to contend with (S4, S5 and S6 give rise to M ’s with

dimensions 3, 6 and 15 equations respectively—as opposed to 14, 42 and

132).

If we take any set {X1, . . . , Xt} of simple partitions of Cn, and we let

{Z1, . . . , Zs} be the set of all simple planar partitions of Cn this system of

equations can be recast as a matrix equation by defining matrices D, R, E

and M as follows:

Dij =















λ[h(Xi)] if i = j

0 otherwise

(26)

Rij = R(Xi, Zj) = R(Xi, Zj) (27)

Eij = E(Xi, Zj) (28)

Mij = F (Cn, Xi ∨ Zj; λ) (29)

Then DR = EM captures the complete system of equations of the form (25).

Hence, to complete this system all we need to do is compute the entries of

M .

Again, we can solve this system if we can invert M . The question remains

open whether there is some way to guarantee in general the non-singularity of

M in the simplified Birkhoff-Lewis system. All we can guarantee at present is
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that for S4, S5 and S6, M is invertible over the polynomials, and with λ = 4

since we computed these matrices explicitly.

Remark 8. We close this section by pointing out that any subset of the edges

of Cn can in the same way be used to define a class of semi-basic graphs: the

free chromials become easier to compute with fewer edges on the circle, and

the constrained chromials can be computed for such graphs in the same way

as in Lemma 7 (with a modified R). The benefits or penalties associated

with the different M ’s arising from different concepts of semi-basic deserve

to be explored.

6 Computing Birkhoff-Lewis Equations

We walk through a derivation of the simplified Birkhoff-Lewis system for a

graph embedded in C4. We need the simple partitions of C4:

X1 = (1, 2, 3, 4)

X2 = (13, 2, 4)

X3 = (24, 1, 3)

X4 = (13, 24)

•

••

•
v1 v2

v3v4

Fig 9. Simple partitions of C4

Note that these coincide with the partitions induced by 4-colourings given in

Figure 1 at the beginning of the paper. Using these partitions, we construct
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the matrices D and R as in (26) and (28) using only planar partitions:

D =













λ(λ − 1)(λ − 2)(λ − 3) 0 0

0 λ(λ − 1)(λ − 2) 0

0 0 λ(λ − 1)(λ − 2)













R =













1 0 0

1 1 0

1 0 1













Then, to compute M , we note that we have the following relationships

amongst the joins of these partitions:

Xi ∨ Xi = Xi ∀i

Xi ∨ Xj = Xj ∨ Xi ∀i

X1 ∨ Xi = Xi ∀i

Xi ∨ X4 = X4 ∀i

X2 ∨ X3 = X4

This implies that if we compute F (C4, Xi; λ) for i = 1, 2, 3, 4 we will have all

the entries of M .

In practice these free chromatic polynomials are obtained by computing

the regular chromatic polynomial of the graph obtained by contracting the

cells of Xi.
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•

••

•
v1 v2

v3v4

•

•

•

v1

v2v4

v3

Fig 10. Contracting the cells of X2 to obtain a path

with chromatic polynomial λ(λ − 1)2

Both X2 and X3 give rise to the graph in Figure 10. X1 gives C4, which

we saw in the Chromatic Polynomials section (Section 2) has chromial λ(λ−

1)(λ2 − 3λ + 3), and X4 leaves K2, which has chromial λ(λ− 1). So we have

M4 =













λ(λ − 1)(λ2 − 3λ + 3) λ(λ − 1)2 λ(λ − 1)2

λ(λ − 1)2 λ(λ − 1)2 λ(λ − 1)

λ(λ − 1)2 λ(λ − 1) λ(λ − 1)2













By whatever means necessary, we obtain M−1. Then, with D, R, and M in

hand we multiply to obtain:

E =













λ(λ−3)
λ2−3λ+1

− (λ−1)(λ−3)
λ2−3λ+1

− (λ−1)(λ−3)
λ2−3λ+1

1
λ2−3λ+1

(λ−1)(λ−3)
λ2−3λ+1

− λ−2
λ2−3λ+1

1
λ2−3λ+1

− λ−2
λ2−3λ+1

(λ−1)(λ−3)
λ2−3λ+1













.

The Main Theorem tells us that we can write out Birkhoff-Lewis equations

for any Cn-embedded graph using the entries of E as coefficients. To express

the resulting equations more cleanly, we multiply through by λ2−3λ+1 and

use Fi and Ki for F (G, Xi; λ) and K(G, Xi; λ) respectively.
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Birkhoff-Lewis equations for any graph embedded in C4.

(λ2 − 3λ + 1)K1 = λ(λ − 3)F1 + (λ − 1)(λ − 3)F2 + (λ − 1)(λ − 3)F3 (30)

(λ2 − 3λ + 1)K2 = F1 + (λ − 1)(λ − 3)F2 − (λ − 2)F3 (31)

(λ2 − 3λ + 1)K3 = F1 − (λ − 2)F2 + (λ − 1)(λ − 3)F3 (32)

Remark 9. Any free chromial can be expressed trivially as a sum of con-

strained chromials in the following way:

Fi =
∑

j s.t. Xi refines Xj

Kj.

Specifically we have the following relationships for any C4-embedded graph:

F1 = K1 + K2 + K3 + K4 (33)

F2 = K2 + K4 (34)

F3 = K3 + K4 (35)

Then, substituting (33) to (35) into (30) to (32) and solving this system with

λ = 4 we obtain

K1 − K2 − K3 + 2K4 = 0,

which is the Birkhoff-Lewis equation used Proposition 1.
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We now investigate Birkhoff-Lewis equations for C5.

•

•

••

•

v1

v2

v3v4

v5

Fig 11. C5

These are the simple partitions of C5, divided into types (i.e., same par-
tition up to rotation):

P lanar Nonplanar

X1 = (1, 2, 3, 4, 5) . . .

. . . X7 = (24, 35, 1)

X2 = (14, 2, 3, 5) X8 = (14, 35, 2)

X3 = (25, 1, 3, 4) X9 = (14, 25, 3)

X4 = (13, 2, 4, 5) X10 = (13, 52, 4)

X5 = (24, 1, 3, 5) X11 = (13, 24, 5)

X6 = (35, 1, 2, 4)

We will again index our system with only the planar partitions. There are

only three distinct graphs arising from contracting according to chromatic

joins of planar partitions of C5:
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•

•

••

•

G1

•

••

•

G2

•

••

G3

Fig 12. Graphs used to compute F (C5, Xi ∨ Xj; λ)

We have

α = P (G1; λ) = λ(λ − 1)4 − λ(λ − 1)3 + λ(λ − 1)(λ − 2)

β = P (G2; λ) = λ(λ − 1)2(λ − 2)

γ = P (G3; λ) = λ(λ − 1)(λ − 2),

from which follows our matrix of chromatic joins:

M5 =

































α β β β β β

β β γ 0 0 γ

β γ β γ 0 0

β 0 γ β γ 0

β 0 0 γ β γ

β γ 0 0 γ β

































Computing DRM−1 give us the following matrix of coefficients:

(λ2 − 3λ + 1)E =

33













(λ + 1)(λ− 4) −(λ + 1)(λ− 4) −(λ + 1)(λ − 4) −(λ + 1)(λ− 4) −(λ + 1)(λ− 4) −(λ + 1)(λ− 4)

2 λ2
− 5λ + 5 −λ− 2 −1 −1 −λ− 2

2 −λ− 2 λ2
− 5λ + 5 −λ− 2 −1 −1

2 −1 −λ− 2 λ2
− 5λ + 5 −λ− 2 −1

2 −1 −1 −λ− 2 λ2
− 5λ + 5 −λ− 2

2 −λ− 2 −1 −1 −λ− 2 λ2
− 5λ + 5











For λ = 4, after making the substitutions suggested by Remark 9, we simplify

and obtain the following Birkhoff-Lewis equations:

K1 = 0 (36)

−K2 + K5 − K7 + K8 = 0 (37)

−K4 + K6 − K7 + K11 = 0 (38)

−K3 − K4 + K5 + K6 − K7 + K10 = 0 (39)

−K2 − K3 + K5 + K6 − K7 + K9 = 0 (40)

•

•

••

•

•
v1 v2

v3

v4v5

v6

Fig 13. C6

For the computation of E for C6, we use more than just the planar par-

titions (this has the dual benefit of demonstrating a non-square E and pro-
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viding the equation we need in the next section). We will find coefficients

to express the constrained chromials with respect to any simple partition (as

opposed to any simple planar partition in the last example) as a combination

of free chromials. Here is the enumeration of simple partitions we use:

First the planar simple partitions (divide once again according to rota-

tional symmetry):

X1 = (1, 2, 3, 4, 5, 6) X5 = (15, 2, 3, 4, 6) X11 = (135, 2, 4, 6)

. . . X6 = (26, 1, 3, 4, 5) X12 = (246, 1, 3, 5)

X2 = (36, 1, 2, 4, 5) X7 = (13, 2, 4, 5, 6) . . .

X3 = (14, 2, 3, 5, 6) X8 = (24, 1, 3, 5, 6) X13 = (15, 24, 3, 6)

X4 = (25, 1, 3, 4, 6) X9 = (35, 1, 2, 4, 6) X14 = (26, 35, 1, 4)

. . . X10 = (46, 1, 2, 3, 5) X15 = (13, 46, 2, 5)
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Then the nonplanar simple partitions:

X16 = (15, 36, 2, 4) X25 = (15, 46, 2, 3) X34 = (13, 46, 25)

X17 = (26, 14, 3, 5) X26 = (15, 26, 3, 4) . . .

X18 = (13, 25, 4, 6) X27 = (26, 13, 4, 5) X35 = (135, 24, 6)

X19 = (24, 36, 1, 5) X28 = (24, 13, 5, 6) X36 = (246, 35, 1)

X20 = (35, 14, 2, 6) X29 = (35, 24, 6, 1) X37 = (135, 46, 2)

X21 = (46, 25, 1, 3) X30 = (46, 35, 1, 2) X38 = (246, 15, 3)

. . . . . . X39 = (135, 26, 4)

X22 = (25, 36, 1, 4) X31 = (14, 25, 36) X40 = (246, 13, 5)

X23 = (14, 36, 2, 5) . . . . . .

X24 = (14, 25, 3, 6) X32 = (15, 24, 36) X41 = (135, 246)

. . . X33 = (26, 35, 14)

We leave the overly enthusiastic reader to confirm that there are 11 dis-

tinct graphs arising from contracting cells of chromatic joins of planar parti-

tions of C6. Computing their free chromials yields:
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a = λ(λ − 1)5 − λ(λ − 1)4 + λ(λ − 1)3 − λ(λ − 1)(λ − 2)

b = λ(λ − 1)2(λ − 2)2

c = λ(λ − 1)4 − λ(λ − 1)2(λ − 2)

d = λ(λ − 1)3

e = λ(λ − 1)3

f = λ(λ − 1)2(λ − 2) − λ(λ − 1)(λ − 2)

g = λ(λ − 1)3 − λ(λ − 1)(λ − 2)

h = λ(λ − 1)2(λ − 2) − λ(λ − 1)(λ − 2)

i = λ(λ − 1)2

j = λ(λ − 1)

k = λ(λ − 1)(λ − 2)
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which then gives

M6 =





















































a b b b c c c c c c d d e e e
b b f f h 0 0 h 0 0 0 0 k 0 0
b f b f 0 h 0 0 h 0 0 0 0 k 0
b f f b 0 0 h 0 0 h 0 0 0 0 k
c h 0 0 c g d e d g d i e i i
c 0 h 0 g c g d e d i d i e i
c 0 0 h d g c g d e d i i i e
c h 0 0 e d g c g d i d e i i
c 0 h 0 d e d g c g d i i e i
c 0 0 h g d e d g c i d i i e
d 0 0 0 d i d i d i d j i i i
d 0 0 0 i d i d i d j d i i i
e k 0 0 e i i e i i i i e j j
e 0 k 0 i e i i e i i i j e j
e 0 0 k i i e i i e i i j j e





















































From here E can be computed, but since neither the massive matrix of co-

efficients nor the huge set of equations obtained are particularly illuminating

to stare at, we omit them here.

7 Reducing Configurations

The following configuration was named in honour of Birkhoff:
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•

•

••

•

•

•

•

•

•

Fig 14. The Birkhoff Diamond

We use this configurations to demonstrate the potential to do reductions

with the Birkhoff-Lewis equations.

Proposition 4. The Birkhoff Diamond is a reducible configuration.

Proof. Let G be a minimal counter-example embedded in the plane. Suppose

to the contrary that G contains the Birkhoff Diamond as a subgraph. Let

G′ be the subgraph of G obtained by deleting the four vertices inside the

diamond.

Viewing the outer ring of the Diamond as C6, we see that Birkhoff-Lewis

equations for C6 must hold for G′. In the system arising from M6 of the

previous section, we can solve for K41 to obtain:

K41 =
K13

2
−

K25

2
−

K29

2
+

K36

2
+

K37

2
. (41)

Now the colourings that induce X13, X25, X29, X36, and X37 all extend in to

the Birkhoff Diamond. The following figure demonstrates this by taking a
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colouring of the ring induced by Xi, and showing a colouring of the Birkhoff

Diamond that uses it.

•

•

••

•

•

•

•

•

•

X13 1 2

3

21

4

3

1

4

2

•

•

••

•

•

•

•

•

•

X25 1 3

4

21

2

2

1

4

3

•

•

••

•

•

•

•

•

•

X29 3 2

1

21

4

1

3

4

2

•

•

••

•

•

•

•

•

•

X36 3 1

2

12

1

2

4

3

4

•

•

••

•

•

•

•

•

•

X37 1 3

1

21

2

2

4

3

4

Fig 15. Colouring partitions that extend in to the Birkhoff Diamond
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This implies that K13, K25, K29, K36, and K37 are all zero (else we could

extend that 4-colouring of G′ to a colouring of G). Then, by (41), we also

get K41 = 0.

Now consider replacing the Birkhoff Diamond with the following config-

uration (recall that dotted lines are contractive edges) to obtain a graph

G:

•

•

••

•

•

f

g

v1 v2

v3

v4v5

v6

Fig 16. G

Note first that if G had a loop, then we would have the following 4-

separation in G (indicated by the boxed vertices):
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•

•

••

•

•

•

•

•

•

Fig 17. A loop in G implies a 4-separation in G

This is because a loop would have to arise from contracting the endpoints

of an edge in G—that is, there needs to be an edge that shares endpoints

with either f or g. Thanks to the symmetry of f and g and the fact G is a

triangulation, either situation is covered by Figure 17.

Therefore G is a loopless planar graph which is smaller than G in which

any 4-colouring must assign the same colours to the pairs {v2, v6} and {v3, v5}

of C6. This implies that to 4-colour G we must have a colouring of G′ which

induces a partition that is refined by (26, 35, 1, 4). These partitions are:

X14, X33, X36, X39 and X41. We have shown that K41 = 0 above, and it can

be verified as in Figure 15 that K14, K33, K36, K39 all induce colourings that

extend in to the Birkhoff Diamond and are hence zero.

Therefore the fact that G is not 4-colourable implies our new, smaller G

is not 4-colourable, and hence the Birkhoff Diamond is a reducible configu-

ration.
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8 Internally 6-connected Counter-examples

In this section we shall prove using Birkhoff-Lewis equations that any 5-

separation in a minimal counter-example consists of the neighbours of a

vertex of degree five—that is, any minimal counter-example is internally

6-connected.

We will work with the simple partitions of C5 under different labels, labels

that anchor the constrained polynomials to the vertices of C5 in a very nice

way. We let Y(i,j) be the simple partition with a single cell of size greater

than one which contains the vertices vi and vj. Similarly, we let Y(k) be the

partition with exactly one cell of size one which contains the vertex vk. Here

is the explicit relabeling:

P lanar Nonplanar

Y0 = X1 = (1, 2, 3, 4, 5) . . .

. . . Y(1) = X7 = (24, 35, 1)

Y(1,4) = X2 = (14, 2, 3, 5) Y(2) = X8 = (14, 35, 2)

Y(2,5) = X3 = (25, 1, 3, 4) Y(3) = X9 = (14, 25, 3)

Y(1,3) = X4 = (13, 2, 4, 5) Y(4) = X10 = (13, 52, 4)

Y(2,4) = X5 = (24, 1, 3, 5) Y(5) = X11 = (13, 24, 5)

Y(3,5) = X6 = (35, 1, 2, 4)
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We then naturally use K(i,j) and K(k) for the constrained chromials asso-

ciated with these newly labeled partitions. Without too much effort, we can

obtain the following equations from 36 to 40:

K0 = 0 (42)

K(1) + K(1,4) = K(2) + K(2,4) (43)

K(2) + K(2,5) = K(3) + K(3,5) (44)

K(3) + K(3,1) = K(4) + K(4,1) (45)

K(4) + K(4,2) = K(5) + K(5,2) (46)

K(5) + K(5,3) = K(1) + K(1,3) (47)

Note that there are still only four linearly independent equations here.

We will use the following notation: for i ∈ {1, . . . , 5} and k ∈ {0, . . . , 4}

we write

i ⊕ k =















i + k if i + k ≤ 5

i + k − 5 otherwise

We can then rewrite (43) to (47) as

K(i) + K(i,i⊕3) = K(i⊕1) + K(i⊕1,i⊕3) i = 1, . . . , 5 (48)

Proposition 5. A minimal counter-example is internally 6-connected.

Proof. Let G be a minimal counter-example and suppose to the contrary G
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has a 5-separation which leaves two components larger than a single vertex

when deleted. Again, this 5-separation forms a cycle since G is a triangula-

tion. Call the cycle C5. Suppose we have an embedding of G and let H in be

the subgraph obtained by deleting the vertices embedded outside C5 and let

Hout be defined analogously.

We denote that a property holds for both K in and Kout terms by replacing

them by K terms.

Claim. The following properties hold for the constrained chromials of H in and Hout:

K(1) + K(2) + K(3) + K(4) + K(5) ≥ 1 (49)

Kin
(i)K

out
(i) = 0 and K in

(i,i⊕1)K
out
(i,i⊕1) = 0 i = 1, . . . , 5 (50)

K(i) + K(i⊕2,i⊕4) + K(i⊕4,i⊕1) + K(i⊕1,i⊕3) ≥ 1 (51)

Proof of (49). Since H in and Hout can be interchanged without loss of gen-

erality, it suffices to prove the claim for Hout. Suppose Kout
(1) + Kout

(2) + Kout
(3) +

Kout
(4) + Kout

(5) = 0. Then there is no way to colour Hout that uses fewer than 4

colours on the ring (since these are all the constrained chromials associated

with partitions that have fewer than four cells). This implies we could re-

place H in with a vertex v of degree 5 whose neighbours are the vertices of

C5
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•

•

••

•

v1

v2

v3v4

v5

•

Fig 18. A potential replacement for H in

to obtain a graph smaller than G which cannot be four coloured (since we

do not have any colour left to colour v) for a contradiction.

Proof of (50). If equation (50) fails, there would exist a 4-colouring of H in

and a 4-colouring of Hout which we could glue together to obtain a 4-colouring

of G. Hence, equation (50) must hold.

Proof of (51). Again, it suffices to prove the claim for Hout. Furthermore,

due to the rotational symmetry, we may assume wlog i = 1. Suppose to the

contrary we have

Kout
(1) + Kout

(3,5) + Kout
(5,2) + Kout

(2,4) = 0. (52)

Let G′ be the graph obtained by replacing H in with the edges {v1, v3} and {v1, v4}.
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Fig 19. Another potential replacement for H in

Note that now any colouring that induces partition

X(2), X(3), X(4), X(5), X(1,3) or X(1,4)

cannot give a 4-colouring of G′ due to these two edges. Since (52) states

that there is no way to colour the rest of G′ and induce any of the remaining

partitions, we conclude that G′ has no 4-colourings. Since it is smaller than

G, this is a contraction.

Claim. Suppose

Kin
(3) = Kin

(4) = 0 and K in
(2) > 0.

Then

Kin
(1,4) = Kin

(1,3) = 0 and K in
(1) = 0.

Proof. From (45), we have K in
(4,1) = Kin

(3,1) since we suppose K in
(3) = Kin

(4) = 0.

We also have Kout
(2) = 0 from (50) since K in

(2) > 0.

From (44), we have K in
(3,5) > 0 since K in

(3) = 0 and K in
(2) > 0. This in turn
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implies that Kout
(3,5) = 0, again by (50).

From (51) we have

Kout
(2) + Kout

(4,1) + Kout
(1,3) + Kout

(3,5) ≥ 1,

but since we have Kout
(2) = 0 and Kout

(3,5) = 0, we know that either Kout
(4,1) or

Kout
(1,3) is positive.

Then, by (50) either K in
(4,1) or Kin

(1,3) is zero. But since K in
(4,1) = Kin

(1,3), we

have K in
(4,1) = Kin

(1,3) = 0.

Finally, by (47), we have K in
(1) > 0 since K in

(1,3) = 0 and K in
(5,3) > 0.

Now, by (50), either

|{i | Kin
(i) = 0, i = 1, . . . , 5}| ≥ 3 (53)

or |{i | Kout
(i) = 0, i = 1, . . . , 5}| ≥ 3 (54)

As before we may assume we are the case of (53). We know that there exists

i ∈ {1, . . . , 5} such that K in
(i) > 0. Due to rotational symmetry, we may also

assume that

Kin
(4) = Kin

(3) = 0 and K in
(2) ≥ 0.

Claim 8 then gives us

Kin
(1,3) = Kin

(1,4) = 0, Kin
(1) > 0.
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Also, since we have (53), we get K in
(5) = 0.

Relabel 1, 2, 3, 4, 5 by 2, 1, 5, 4, 3 respectively and apply Claim 8 again.

Then we see that (in terms of our original labelling)

Kin
(2,4) = Kin

(2,5) = 0.

Finally, we have by (51) that

Kin
(5) + Kin

(3,1) + Kin
(1,4) + Kin

(4,2) ≥ 1.

Since all the terms on the left here are zero, we have a contradiction.

9 Future Directions

The main lingering question here is can the differences between the various

forms of the Birkhoff-Lewis equations (obtained by choosing a different subset

of the partitions to obtain equations for, or modifying the basic graph used to

obtain the equations) be pinned down? Knowing what benefits or detriments

are present in a given set of Birkhoff-Lewis equations would have obvious

advantages.

The other path that deserves some exploration involves the nonsingularity

of various semi-basic graphs and the desire to automate the computation of

the M matrices built from them.
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A Discharging

This summary of discharging owes a lot to the very pleasant treatment in

[13].

So-called “Discharging” is the method used to generate unavoidable sets.

Speaking very broadly, we can sum the method up as follows:

Given a graph G

1. Place a “charge” at each vertex of G.

2. Sum up the charge on all vertices of G to obtain the total charge.

3. Describe a discharging algorithm—a set of instructions for moving charge
between vertices of G in such a way that conserves total charge.
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4. Argue that certain structural properties of G would force the total
charge to change under the discharging algorithm (in spite of conser-
vation), and hence G cannot have those structural properties.

We can apply this method directly to proving that a set of configurations U

is unavoidable by making the “structural properties” of step 4 the hypothesis

that G contains no configuration in U . We demonstrate with an example.

Define a set of configurations as follows:

U = {a vertex of degree 5 with a neighbour of degree 5,

a vertex of degree 5 with a neighbour of degree 6}.

Proposition 6. U is unavoidable.

Proof. Let G be a minimal counter-example, and suppose it is embedded in

the plane (we need this to talk about its faces). As before, we may assume

G is an internally 6-connected triangulation.

Place a charge of value 6 − d(u) at each vertex u ∈ V (G). Note that all

vertices of degree 5 have a charge of 1, vertices of degree 6 have no charge,

and vertices of higher degree have negative charge.

We can calculate the total charge on the graph using Euler’s Formula:

Let v, e, and f be the number of vertices, edges and faces of G respectively.

Note that since G is a triangulation, 2e = 3f , and hence 6f − 4e = 0 (an

observation whose utility will be clear in the sum below). We sum up the
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charges

∑

u∈V

(6 − d(v)) = 6v −
∑

u∈V

d(v)

= 6v − 2e

= 6v − 2e + (6f − 4e)

= 6(v − e + f)

= 12 (by Euler’s Formula)

[Side note: even before doing any discharging we have learned something

about minimum counter-examples: since this sum is nonnegative, any min-

imum counter-example must have vertices of degree five. Using this same

general method, the discharging algorithm which does nothing proves that

Ū = {a vertex of degree five}

is an unavoidable set. This is in fact the unavoidable set Kempe used in his

famously flawed proof of the 4CT [8].]

We will use the following discharging algorithm:

Algorithm. Each vertex of degree 5 gives a charge of 1
5

to each of its neigh-

bours which has degree at least 7.

Note that this algorithm conserves the total charge on the graph. Now

we suppose to the contrary that no subgraph of G is a configuration in U

(i.e., that no adjacent vertices of G both have degrees five, or have degrees
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five and six).

This implies that every neighbour of every vertex of degree 5 has degree

seven or greater, so every vertex of degree five now has charge zero (each one

discharges 1
5

to each of its neighbours). Furthermore, the vertices of degree 6

are unchanged by this discharging algorithm and hence still have no charge.

Now consider a vertex w of degree k ≥ 7. Since G is a triangulation, the

k neighbours of w form a cycle. No two consecutive neighbours on this cycle

have degree five by assumption. This implies that at most 1
2
k neighbours of

w have degree five, and hence w gains at most 1
10

k charge from the algorithm.

The new charge for w is thus at most

6 + k −
1

10
k = 6 −

9

10
k ≤ 6 −

9

10
7 < 0.

Now we have that every vertex of G has nonpositive charge, and so the total

charge, in spite of conservation, is no longer 12. This is the contradiction we

seek.
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