Discrete Optimization Comprehensive Exam — Spring 2008 Examiners: Bill Cunningham and Chaitanya Swamy

Instructions: Unless otherwise stated, do not use results without proof. If you are asked to state or prove a result in a part of a question, you may use it without proof in subsequent parts of the question. The reference CCPS refers to the Cook-Cunningham-Pulleyblank-Schrijver book.

Problem 1: Matroid Theory

(22 marks)

- (a) Let M be a matroid on S let J be an independent set of M, and let $e \in S$. Prove that $J \cup \{e\}$ contains at most one circuit (that is, minimal dependent subset) of M.
- (b) In the coloured spanning tree problem, we are given an undirected graph G where each edge e has a unique colour in $\{1,\ldots,k\}$. Each colour i has an integer $\pi_i\geq 0$ associated with it. Let C_i denote the set of edges having colour i. A feasible solution to the problem is a spanning tree T of G such that $|T\cap C_i|\leq \pi_i$ for all $i=1,\ldots,k$.

Derive a combinatorial necessary and sufficient condition for the coloured spanning tree problem to have a feasible solution. You may use results from CCPS.

Problem 2: Matching

(22 marks)

- (a) Use the Tutte-Berge formula to prove that, if G is a bipartite graph having no cover of size less than k, then G has a matching of size k.
- (b) Let G = (V, E) be an undirected graph, let p, q be integers with $0 \le p \le q$, and let $x \in \mathbb{R}^E$ satisfy

$$x(\delta(v)) \leq 1$$
 for all $v \in V$
$$x(\gamma(S)) \leq (|S|-1)/2 \text{ for all } S \subseteq V \text{ with } |S| \text{ odd and at least 3}$$
 $p \leq x(E) \leq q$
$$x_e \geq 0, \text{ for all } e \in E.$$

Recall that $\gamma(S)$ is the set of edges with both ends in S. Prove that x is a convex combination of matchings of G, each having cardinality at least p and at most q. You may use the matching polyhedron theorem, as well as elementary results about matching.

Problem 3: Polyhedral Theory

(22 marks)

For this question, you may use any result from the CCPS book (except the one you are asked to prove).

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a non-empty rational polyhedron, where A is an $m \times n$ matrix, such that for every $c \in \mathbb{R}^n$, the linear program: $\max c^T x$ s.t. $x \in P$, is bounded. Let P_I denote the convex hull of the integral vectors in P.

- (a) Define the term Chvátal-Gomory cut for P. Let P' be the set of all $x \in P$ that satisfy all the Chvátal-Gomory cuts for P. Prove that P' is a polyhedron.
- (b) Show that if x^* is a vertex of P and $x^* \notin P_I$, then there exists a Chvátal-Gomory cut for P that cuts off x^* (i.e., x^* does not satisfy the Chvátal-Gomory inequality).

(c) Define $P^{(0)} = P$, and $P^{(i+1)} = (P^{(i)})'$ for $i \ge 0$. Show that if $P^{(k+1)} = P^{(k)}$ for some integer k, then $P^{(k)} = P_I$.

<u>Problem 4:</u> Network Flows (22 marks)

Let G=(V,E) be a directed graph with source $s\in V$, sink $t\in V$, and integer capacities $u_e\geq 0$ on the edges with $u_e=k$ for every edge e out of s. There are no edges entering the source s. For an integer $i\geq 0$, let $u^{(i)}$ denote the capacity-vector where $u^{(i)}_e=i$ for every edge e out of s, and $u^{(i)}_e=u_e$ otherwise. Call an s-t flow f a prefix-maximal flow if for every integer $i\in [0,k]$, there exists an s-t flow $h\leq f$ that is (feasible and) a maximum s-t flow for the instance with capacity-vector $u^{(i)}$.

Consider the flow-network in Figure 1 for example. Figures 1a) and 1b) show two maximum s-t flows in this network. The capacity of each edge appears as a label next to the edge and the boxed numbers give the flow on each edge. The flow in Fig. 1a) is a prefix-maximal flow, as can be easily verified. The flow in Fig. 1b) is *not* prefix maximal: if one decreases the capacities of the edges leaving s to 1, then the value of the maximum s-t flow for this reduced-capacity instance is 2 (the flow in Fig. 1a) continues to be a max-flow), whereas every s-t flow $h \le f$ must have $h_{s,u} \le 1$, $h_{s,v} = 0$ and thus have value at most 1.

You may use standard results about flows to answer the following questions.

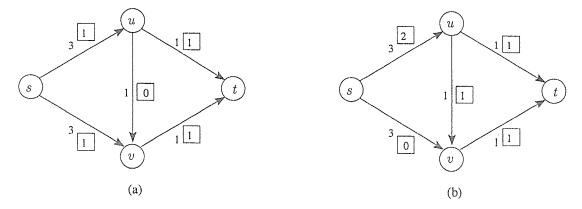


Figure 1: (a) a prefix-maximal flow, and (b) a flow that is not prefix maximal.

- (a) Let f be a maximum s-t flow (with capacity-vector u). Argue that f is a prefix-maximal flow iff for every integer $i \in [0, k]$, the value of the maximum s-t flow for the instance with capacity-vector $u^{(i)}$ is equal to $\sum_{e \in E: e = (s, u)} \min(i, f_e)$.
- (b) Prove that a prefix-maximal flow always exists.

<u>Problem 5:</u> Complexity (12 marks)

For each of the following problems, either indicate that the problem is *NP*-hard, or that it admits a polynomial-time algorithm. In the former case indicate a reduction from a well-known *NP*-hard problem; in the latter case, indicate briefly how the problem can be solved using results from CCPS.

- (a) Given a graph with integer weights on the edges, determine whether there is a circuit of negative weight.
- (b) Given a graph with integer weights on the edges, and distinct vertices r, s, determine whether there is a simple (r, s)-path of negative weight.
- (c) Given a graph with integer weights on the edges, determine whether there is a spanning connected subgraph of negative weight.