
Discrete Optimization Comprehensive Exam — Spring 2012

Examiners: Bertrand Guenin and Chaitanya Swamy

Instructions: Unless otherwise stated, do not use results without proofs. If you are asked to state or prove a

result in a part of a question, you may use it without proof in subsequent parts of the question. The reference

CCPS refers to the Cook-Cunningham-Pulleyblank-Schrijver book.

Problem 1: Network Flows (25 marks)

We are given an undirected graph G = (V,E), and integer bounds {(`v, κv)}v∈V on the nodes such that

`v ≤ κv for all nodes v. Say that G is (`, κ)-orientable if one can direct the edges of E to obtain an arc-set

A such that `v ≤ |δinA (v)| ≤ κv for every node v ∈ V (where δinA (v) denote the incoming edges of v in A).

(a) Formulate the problem of determining whether G is (`, κ)-orientable as a network-flow problem.

Hint: Create a vertex for each node and edge of G, and have ∞-capacity arcs directed from each

edge-vertex to the node-vertices corresponding to the end points of the edge.

(b) State Hoffman’s circulation theorem, which gives necessary and sufficient conditions for the existence

of a circulation satisfying lower bounds and capacities.

(c) Use the construction in part (a) to show that G is orientable if and only if∑
v∈S

κv ≥ |γ(S)|,
∑
v∈S

`v ≤ |γ(S)|+ |δ(S)| for all S ⊆ V.

Recall that γ(S) is the set of edges with both ends in S, and δ(S) is the set of edges with exactly one

end in S. You may use standard results about flows.

Problem 2: Matroid Theory (25 marks)

(a) Let U be a ground set. Let T1 ∪ T2 ∪ . . . Tk be a partition of U , and t1, . . . , tk be nonnegative integers.

Show that M =
(
U, I := {S ⊆ U : |S ∩ Ti| ≤ ti}

)
is a matroid.

(b) Let G = (V = A ∪ B,E) be a bipartite graph with bipartition (A,B). Let {bv}v∈V be integers such

that 1 ≤ bv ≤ |δ(v)| for every v ∈ V . A b-matching is a subset M of edges such that |δ(v) ∩M | ≤ bv
for every node v. The size of a b-matching M is the number of edges in M . Formulate the problem of

finding a maximum-size b-matching in G as a matroid-intersection problem.

(c) Define b(S) =
∑

v∈S bv for a subset S ⊆ V . Use the construction in part (b) and the matroid-

intersection theorem to show that

max{|M | :M is a b-matching} = min{b(S) : S is a vertex cover of G}.
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Problem 3: Complexity (15 marks)

Let G = (V,E) be a graph and denote by F the set of all circuits of G and by Fodd the set of all circuits of

G that have an odd number of edges (by a circuit we mean an set of edges that form a connected subgraph

where every vertex has degree two). Consider the following polytopes in <E ,

P =

{
x :
∑
e∈C

xe ≥ 1, C ∈ F ,0 ≤ x ≤ 1

}
and

Q =

{
x :
∑
e∈C

xe ≥ 1, C ∈ Fodd,0 ≤ x ≤ 1

}
.

Let w be a set of non-negative integer edge weights. For each of the following optimization problem, either

prove that the problem is polynomial solvable by outlining an algorithm or prove that it is NP-complete by

reducing it to one of the problems in CCPS.

(a) min{wTx : x ∈ P, x integer},

(b) min{wTx : x ∈ Q, x integer}.

Problem 4: Matching (20 marks)

Let G be a connected graph with at least two vertices and with the property that for every vertex v there

exists a maximum matching avoiding v. Given a pair of vertices u and v, we write u ∼ v if no maximum

matching avoids both u and v.

(a) Observe that for every edge uv, u ∼ v,

(b) Show that if u ∼ v and v ∼ w for distinct vertices u, v, w, then u ∼ w,

(c) Prove that for every vertex v there exists a matching that covers every vertex of G except v.

A perfect 2-matching of a graph is an assignment of weights 0, 1 or 2 to the edges, such that the weight of

the edges incident with any vertex sum to 2.

(d) Show that G has a perfect 2-matching.

Problem 5: Polyhedral Theory (20 marks)

A graph is bad if it contains as a spanning subgraph, a graph where the components consists of single edges,

or circuits with an odd number of edges (by a circuit we mean an set of edges that form a connected subgraph

where every vertex has degree two). Moreover, we require that we have at least one such odd circuit. As

an example we indicate in the next figure a bad graph. The double edges indicate the forbidden subgraph.

Consider the polytope,

P =
{
x ≥ 0 :

∑
e∈δ(v)

xe = 1, for all v ∈ V
}
.

Recall that a polytope is integral if every extreme point is integral.
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(a) Show that if G is bad, then P is not integral.

Hint: Construct a fractional extreme point where all values are in {0, 1, 12}.

(b) Show that if G is not bad then P is integral.

Hint: Express fractional points of P as the convex combination of two points of P .
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