Discrete Optimization Comprehensive Exam - Spring 2012

Examiners: Bertrand Guenin and Chaitanya Swamy

Instructions: Unless otherwise stated, do not use results without proofs. If you are asked to state or prove a result in a part of a question, you may use it without proof in subsequent parts of the question. The reference CCPS refers to the Cook-Cunningham-Pulleyblank-Schrijver book.

Problem 1: Network Flows

(25 marks)
We are given an undirected graph $G=(V, E)$, and integer bounds $\left\{\left(\ell_{v}, \kappa_{v}\right)\right\}_{v \in V}$ on the nodes such that $\ell_{v} \leq \kappa_{v}$ for all nodes v. Say that G is (ℓ, κ)-orientable if one can direct the edges of E to obtain an arc-set A such that $\ell_{v} \leq\left|\delta_{A}^{\mathrm{in}}(v)\right| \leq \kappa_{v}$ for every node $v \in V$ (where $\delta_{A}^{\mathrm{in}}(v)$ denote the incoming edges of v in A).
(a) Formulate the problem of determining whether G is (ℓ, κ)-orientable as a network-flow problem.

Hint: Create a vertex for each node and edge of G, and have ∞-capacity arcs directed from each edge-vertex to the node-vertices corresponding to the end points of the edge.
(b) State Hoffman's circulation theorem, which gives necessary and sufficient conditions for the existence of a circulation satisfying lower bounds and capacities.
(c) Use the construction in part (a) to show that G is orientable if and only if

$$
\sum_{v \in S} \kappa_{v} \geq|\gamma(S)|, \quad \sum_{v \in S} \ell_{v} \leq|\gamma(S)|+|\delta(S)| \quad \text { for all } S \subseteq V
$$

Recall that $\gamma(S)$ is the set of edges with both ends in S, and $\delta(S)$ is the set of edges with exactly one end in S. You may use standard results about flows.

Problem 2: Matroid Theory

(a) Let U be a ground set. Let $T_{1} \cup T_{2} \cup \ldots T_{k}$ be a partition of U, and t_{1}, \ldots, t_{k} be nonnegative integers. Show that $M=\left(U, \mathcal{I}:=\left\{S \subseteq U:\left|S \cap T_{i}\right| \leq t_{i}\right\}\right)$ is a matroid.
(b) Let $G=(V=A \cup B, E)$ be a bipartite graph with bipartition (A, B). Let $\left\{b_{v}\right\}_{v \in V}$ be integers such that $1 \leq b_{v} \leq|\delta(v)|$ for every $v \in V$. A b-matching is a subset M of edges such that $|\delta(v) \cap M| \leq b_{v}$ for every node v. The size of a b-matching M is the number of edges in M. Formulate the problem of finding a maximum-size b-matching in G as a matroid-intersection problem.
(c) Define $b(S)=\sum_{v \in S} b_{v}$ for a subset $S \subseteq V$. Use the construction in part (b) and the matroidintersection theorem to show that

$$
\max \{|M|: M \text { is a } b \text {-matching }\}=\min \{b(S): S \text { is a vertex cover of } G\}
$$

Let $G=(V, E)$ be a graph and denote by \mathcal{F} the set of all circuits of G and by $\mathcal{F}_{\text {odd }}$ the set of all circuits of G that have an odd number of edges (by a circuit we mean an set of edges that form a connected subgraph where every vertex has degree two). Consider the following polytopes in \Re^{E},

$$
\begin{aligned}
& P=\left\{x: \sum_{e \in C} x_{e} \geq 1, C \in \mathcal{F}, \mathbf{0} \leq x \leq \mathbf{1}\right\} \quad \text { and } \\
& Q=\left\{x: \sum_{e \in C} x_{e} \geq 1, C \in \mathcal{F}_{\text {odd }}, \mathbf{0} \leq x \leq \mathbf{1}\right\} .
\end{aligned}
$$

Let w be a set of non-negative integer edge weights. For each of the following optimization problem, either prove that the problem is polynomial solvable by outlining an algorithm or prove that it is NP-complete by reducing it to one of the problems in CCPS.
(a) $\min \left\{w^{T} x: x \in P, x\right.$ integer $\}$,
(b) $\min \left\{w^{T} x: x \in Q, x\right.$ integer $\}$.

Problem 4: Matching

(20 marks)
Let G be a connected graph with at least two vertices and with the property that for every vertex v there exists a maximum matching avoiding v. Given a pair of vertices u and v, we write $u \sim v$ if no maximum matching avoids both u and v.
(a) Observe that for every edge $u v, u \sim v$,
(b) Show that if $u \sim v$ and $v \sim w$ for distinct vertices u, v, w, then $u \sim w$,
(c) Prove that for every vertex v there exists a matching that covers every vertex of G except v.

A perfect 2-matching of a graph is an assignment of weights 0,1 or 2 to the edges, such that the weight of the edges incident with any vertex sum to 2 .
(d) Show that G has a perfect 2-matching.

Problem 5: Polyhedral Theory
(20 marks)
A graph is bad if it contains as a spanning subgraph, a graph where the components consists of single edges, or circuits with an odd number of edges (by a circuit we mean an set of edges that form a connected subgraph where every vertex has degree two). Moreover, we require that we have at least one such odd circuit. As an example we indicate in the next figure a bad graph. The double edges indicate the forbidden subgraph. Consider the polytope,

$$
P=\left\{x \geq \mathbf{0}: \sum_{e \in \delta(v)} x_{e}=1, \text { for all } v \in V\right\} .
$$

Recall that a polytope is integral if every extreme point is integral.

(a) Show that if G is bad, then P is not integral.

Hint: Construct a fractional extreme point where all values are in $\left\{0,1, \frac{1}{2}\right\}$.
(b) Show that if G is not bad then P is integral.

Hint: Express fractional points of P as the convex combination of two points of P.

