Discrete Optimization Comprehensive Exam - Spring 2017

Examiners: Ricardo Fukasawa and Laura Sanità

Instructions:

- All five questions have the same number of marks.
- If you are pressed for time it is better to answer some questions completely than to give partial answers to all questions.
- Unless otherwise stated, do not use results without proofs.
- If you are asked to state or prove a result in a part of a question, you may use it without proof in subsequent parts of the question.
- Feel free to ask the proctors if any notation is unclear.

Question 1 [Network Flows] - 20 points

Let D = (V, A) be a directed graph, $u \in \mathbb{R}^A_+$ and $b \in \mathbb{R}^V$. For any $W \subseteq V$, let $\delta^{out}(W)$ be the set of arcs leaving W and $\delta^{in}(W)$ be the set of arcs entering W. Moreover, let $f_x(v) = \sum_{wv \in A} x_{wv} - \sum_{vw \in A} x_{vw}$. (In both questions, you can use the max-flow/min-cut theorem without proof)

- (a) (10 points) Prove that there exists x satisfying $0 \le x \le u$ and $f_x(v) = b_v$ for all $v \in V$ if and only if b(V) = 0 and, for every $W \subseteq V$ we have $b(W) \le u(\delta^{in}(W))$.
- (b) (10 points) Let $b \in \mathbb{R}^V$ be such that $b(V) \ge 0$. Prove that there exists x satisfying $0 \le x \le u$ and $f_x(v) \le b_v$ for all $v \in V$ if and only if, for every $W \subseteq V$ we have $b(W) + u(\delta^{out}(W)) \ge 0$.

Question 2 [Matroid Theory] - 20 points

- (a) (4 points) State the definition of rank function of a matroid. Prove that if $M_a = (S, \mathcal{I}_a)$ and $M_b = (S, \mathcal{I}_b)$ are two matroids with rank functions r_a and r_b , respectively, such that $r_a(A) = r_b(A)$ for all $A \subseteq S$, then $M_a = M_b$.
- (b) (4 points) Recall that the dual matroid M^* of a matroid $M = (S, \mathcal{I})$ is given by $M^* = (S, \mathcal{I}^*)$ with

$$\mathcal{I}^* = \{J \subseteq S : r(S \setminus J) = r(S)\}$$

where r is the rank function of M.

Prove that the rank function r^* of M^* satisfies

$$r^*(A) = |A| + r(S \setminus A) - r(S) \qquad \forall A \subseteq S$$

- (c) (4 points) Use (a) and (b) to prove that $(M^*)^* = M$.
- (d) (8 points) Use duality and matroid intersection to show that a connected graph G = (V, E) has two edge-disjoint spanning trees if and only if for all partitions V_1, V_2, \ldots, V_p of V, one has $|\delta(V_1, V_2, \ldots, V_p)| \ge 2(p-1)$, where $\delta(V_1, V_2, \ldots, V_p)$ is the set of edges with endpoints in different partitions.

(Note: for this question you can use the matroid intersection theorem without proving it)

Question 3 [Matching Theory] - 20 points

Let G = (V, E) be a connected undirected graph. Recall the Tutte-Berge formula:

$$\max\{|M|: M \text{ is a matching of } G\} = \min\{\frac{1}{2}(|V| - oc(G \setminus A) + |A|): A \subseteq V\}$$

where $oc(G \setminus A)$ denotes the number of odd components in the graph obtained by removing A from G.

- (a) (10 points) A vertex v is called *essential* if every maximum matching of G covers it. Let $A \subseteq V$ be a minimizer in the Tutte-Berge formula. Show that every vertex v that is *not* a vertex of an odd component in $G \setminus A$, is essential.
- (b) (10 points) Assume that G is a k-vertex-connected graph, let ν(G) denotes the maximum cardinality of a matching of G, and τ(G) denote the minimum cardinality of a vertex-cover of G (i.e. a subset C ⊆ V such that each edge is incident into at least one vertex in C). Show that if ν(G) < (|V| 1)/2, then ν(G) ≥ k, and τ(G) < |V| k 1.</p>

Question 4 [Polyhedral Theory] - 20 points

Let $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ be a rational polyhedron with $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$. Inequality $\alpha^T x \leq \alpha_o$ is said to be a Chvátal-Gomory cut for P if $\alpha = A^T y \in \mathbb{Z}^n$ and $\alpha_o = |y^T b|$ for some $y \in \mathbb{R}^m_+$.

- (a) (5 points) Let $P' := P \cap \{x \text{ satisfying all Chvátal-Gomory cuts for } P\}$ be the Chvátal-Gomory closure of P. Prove that P' is a rational polyhedron.
- (b) (5 points) Assuming P is nonempty, show that P' can be generated by $Ax \leq b$ and Chvátal-Gomory cuts for which $y^T b = \max \{ \alpha^T x : x \in P \}$.
- (c) (4 points) Assuming P is pointed and nonempty, show that P' can be generated by $Ax \leq b$ and Chvátal-Gomory cuts such that $y^T A \bar{x} = y^T b$ for \bar{x} a nonintegral vertex of P.
- (d) (6 points) Let $k \in \mathbb{Z}$ and $k \ge 1$. Show that the Chvátal rank of $P(k) = \left\{ x \in \mathbb{R}^2 : x_2 \ge 0; x_2 \le 2kx_1; x_1 + \frac{1}{2k}x_2 \le 1 \right\}$ is at least k. (you may use, without proof, the fact that if Q and P are rational polyhedra with $Q \subseteq P$, then $Q' \subseteq P'$)

Question 5 [Complexity] - 20 points

Are the following problems polynomial-time solvable or NP-complete? Give a brief and convincing explanation. Detailed proofs are not needed. You may use the list of NP-complete problems given in the Appendix.

- (a) (10 points) Given a directed graph D = (V, A), does there exist a collection of vertex-disjoint directed cycles in D partitioning V? (i.e., such that each vertex $v \in V$ belongs to exactly one cycle of the collection).
- (b) (10 points) Given a directed graph D = (V, A), does there exist a collection of vertex-disjoint triangles in D partitioning V? (i.e., such that each vertex $v \in V$ belongs to exactly one triangle of the collection, where a triangle is a directed cycle with 3 edges).

Appendix: NP-Complete problems

Multiple choice branching

INSTANCE: Directed graph D = (V, A), a weight $w_a \in \mathbb{Z}_+$ for all $a \in A$, a partition of A into disjoint sets A_1, \ldots, A_m and a positive integer K.

QUESTION: Is there a subset A' of A with weight at least K such that no two arcs in A' enter the same vertex, A' is acyclic, and A' contains at most one arc from each set A_i ?

Vertex cover

INSTANCE: Graph G = (V, E), and a positive integer $K \leq |V|$.

QUESTION: Is there a vertex cover of size K or less in G; i.e., is there a set $V' \subseteq V$ of at most K vertices such that every edge $e \in E$ has at least one endpoint in V'?

Disjoint connecting paths

INSTANCE: Graph G, collection of disjoint vertex pairs $(s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k)$.

QUESTION: Does G contain k mutually vertex disjoint paths, connecting s_i and t_i for each $i = 1, \ldots, k$?

3-dimensional matching

INSTANCE: Three disjoint sets of elements X, Y, Z, with |X| = |Y| = |Z| = q, collection $S \subseteq X \times Y \times Z$.

QUESTION: Does S contain a sub-collection $S' \subseteq S$ of size |S'| = q, such that each element of $X \cup Y \cup Z$ is contained in exactly one set of the sub-collection S'?

Edge colouring

INSTANCE: Graph G = (V, E) and $K \in \mathbb{Z}_+$.

QUESTION: Can each edge be assigned one of K different colours so that edges incident to the same vertex get distinct colours? Remains hard for cubic graphs and K = 3.

Partition into forests

INSTANCE: Graph G = (V, E), positive integer $K \leq |V|$.

QUESTION: Can the vertices of G be partitioned into $k \leq K$ disjoint sets V_1, \ldots, V_k such that the subgraph induced by V_i contains no circuits, for all $1 \leq i \leq k$?

Knapsack

INSTANCE: A finite set U, values $s_u, v_u \in \mathbb{Z}_+$ for all $u \in U$ and $B, K \in \mathbb{Z}_+$. QUESTION: Is there a subset $U' \subseteq U$ such that

$$\sum_{u \in U'} s_u \le B \qquad \sum_{u \in U'} v_u \ge K$$

Maximum clique

INSTANCE: Graph G = (V, E) and $K \in \mathbb{Z}_+$.

QUESTION: Does G contain a clique (induced complete subgraph) of size K?

Maximum cut

INSTANCE: A graph G = (V, E) and $K \in \mathbb{Z}_+$. QUESTION: Is there $S \subseteq V$ such that $|\delta(S)| \ge K$?

Minimum cover

INSTANCE: Collection \mathcal{C} of subsets of a set \mathcal{S} , positive integer K.

QUESTION: Does C contain a *cover* for S of size K or less, that is, a subset $C' \subseteq C$ with $|C'| \leq K$ and such that $\bigcup_{c \in C'} C = S$?