Discrete Optimization Comprehensive Exam - Spring 2017

Examiners: Ricardo Fukasawa and Laura Sanità

Instructions:

- All five questions have the same number of marks.
- If you are pressed for time it is better to answer some questions completely than to give partial answers to all questions.
- Unless otherwise stated, do not use results without proofs.
- If you are asked to state or prove a result in a part of a question, you may use it without proof in subsequent parts of the question.
- Feel free to ask the proctors if any notation is unclear.

Question 1 [Network Flows] - 20 points

Let $D=(V, A)$ be a directed graph, $u \in \mathbb{R}_{+}^{A}$ and $b \in \mathbb{R}^{V}$. For any $W \subseteq V$, let $\delta^{o u t}(W)$ be the set of arcs leaving W and $\delta^{i n}(W)$ be the set of arcs entering W. Moreover, let $f_{x}(v)=\sum_{w v \in A} x_{w v}-\sum_{v w \in A} x_{v w}$. (In both questions, you can use the max-flow/min-cut theorem without proof)
(a) (10 points) Prove that there exists x satisfying $0 \leq x \leq u$ and $f_{x}(v)=b_{v}$ for all $v \in V$ if and only if $b(V)=0$ and, for every $W \subseteq V$ we have $b(W) \leq u\left(\delta^{i n}(W)\right)$.
(b) (10 points) Let $b \in \mathbb{R}^{V}$ be such that $b(V) \geq 0$. Prove that there exists x satisfying $0 \leq x \leq u$ and $f_{x}(v) \leq b_{v}$ for all $v \in V$ if and only if, for every $W \subseteq V$ we have $b(W)+u\left(\delta^{o u t}(W)\right) \geq 0$.

Question 2 [Matroid Theory] - 20 points
(a) (4 points) State the definition of rank function of a matroid. Prove that if $M_{a}=\left(S, \mathcal{I}_{a}\right)$ and $M_{b}=\left(S, \mathcal{I}_{b}\right)$ are two matroids with rank functions r_{a} and r_{b}, respectively, such that $r_{a}(A)=r_{b}(A)$ for all $A \subseteq S$, then $M_{a}=M_{b}$.
(b) (4 points) Recall that the dual matroid M^{*} of a matroid $M=(S, \mathcal{I})$ is given by $M^{*}=\left(S, \mathcal{I}^{*}\right)$ with

$$
\mathcal{I}^{*}=\{J \subseteq S: r(S \backslash J)=r(S)\}
$$

where r is the rank function of M.
Prove that the rank function r^{*} of M^{*} satisfies

$$
r^{*}(A)=|A|+r(S \backslash A)-r(S) \quad \forall A \subseteq S
$$

(c) (4 points) Use (a) and (b) to prove that $\left(M^{*}\right)^{*}=M$.
(d) (8 points) Use duality and matroid intersection to show that a connected graph $G=(V, E)$ has two edge-disjoint spanning trees if and only if for all partitions $V_{1}, V_{2}, \ldots, V_{p}$ of V, one has $\left|\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right| \geq 2(p-1)$, where $\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ is the set of edges with endpoints in different partitions.
(Note: for this question you can use the matroid intersection theorem without proving it)

Question 3 [Matching Theory] - 20 points

Let $G=(V, E)$ be a connected undirected graph. Recall the Tutte-Berge formula:

$$
\max \{|M|: M \text { is a matching of } G\}=\min \left\{\frac{1}{2}(|V|-o c(G \backslash A)+|A|): A \subseteq V\right\}
$$

where $o c(G \backslash A)$ denotes the number of odd components in the graph obtained by removing A from G.
(a) (10 points) A vertex v is called essential if every maximum matching of G covers it. Let $A \subseteq V$ be a minimizer in the Tutte-Berge formula. Show that every vertex v that is not a vertex of an odd component in $G \backslash A$, is essential.
(b) (10 points) Assume that G is a k-vertex-connected graph, let $\nu(G)$ denotes the maximum cardinality of a matching of G, and $\tau(G)$ denote the minimum cardinality of a vertex-cover of G (i.e. a subset $C \subseteq V$ such that each edge is incident into at least one vertex in $C)$.
Show that if $\nu(G)<(|V|-1) / 2$, then $\nu(G) \geq k$, and $\tau(G)<|V|-k-1$.

Question 4 [Polyhedral Theory]-20 points

Let $P:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a rational polyhedron with $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$. Inequality $\alpha^{T} x \leq \alpha_{o}$ is said to be a Chvátal-Gomory cut for P if $\alpha=A^{T} y \in \mathbb{Z}^{n}$ and $\alpha_{o}=\left\lfloor y^{T} b\right\rfloor$ for some $y \in \mathbb{R}_{+}^{m}$.
(a) (5 points) Let $P^{\prime}:=P \cap\{x$ satisfying all Chvátal-Gomory cuts for $P\}$ be the Chvátal-Gomory closure of P. Prove that P^{\prime} is a rational polyhedron.
(b) (5 points) Assuming P is nonempty, show that P^{\prime} can be generated by $A x \leq b$ and Chvátal-Gomory cuts for which $y^{T} b=\max \left\{\alpha^{T} x: x \in P\right\}$.
(c) (4 points) Assuming P is pointed and nonempty, show that P^{\prime} can be generated by $A x \leq b$ and Chvátal-Gomory cuts such that $y^{T} A \bar{x}=y^{T} b$ for \bar{x} a nonintegral vertex of P.
(d) (6 points) Let $k \in \mathbb{Z}$ and $k \geq 1$.

Show that the Chvátal rank of $P(k)=\left\{x \in \mathbb{R}^{2}: x_{2} \geq 0 ; x_{2} \leq 2 k x_{1} ; x_{1}+\frac{1}{2 k} x_{2} \leq 1\right\}$ is at least k.
(you may use, without proof, the fact that if Q and P are rational polyhedra with $Q \subseteq P$, then $\left.Q^{\prime} \subseteq P^{\prime}\right)$

Question 5 [Complexity] - 20 points

Are the following problems polynomial-time solvable or NP-complete? Give a brief and convincing explanation. Detailed proofs are not needed. You may use the list of NP-complete problems given in the Appendix.
(a) (10 points) Given a directed graph $D=(V, A)$, does there exist a collection of vertex-disjoint directed cycles in D partitioning V ? (i.e., such that each vertex $v \in V$ belongs to exactly one cycle of the collection).
(b) (10 points) Given a directed graph $D=(V, A)$, does there exist a collection of vertex-disjoint triangles in D partitioning V ? (i.e., such that each vertex $v \in V$ belongs to exactly one triangle of the collection, where a triangle is a directed cycle with 3 edges).

Appendix: NP-Complete problems

Multiple choice branching

INSTANCE: Directed graph $D=(V, A)$, a weight $w_{a} \in \mathbb{Z}_{+}$for all $a \in A$, a partition of A into disjoint sets A_{1}, \ldots, A_{m} and a positive integer K.
QUESTION: Is there a subset A^{\prime} of A with weight at least K such that no two arcs in A^{\prime} enter the same vertex, A^{\prime} is acyclic, and A^{\prime} contains at most one arc from each set A_{i} ?

Vertex cover

INSTANCE: Graph $G=(V, E)$, and a positive integer $K \leq|V|$.
QUESTION: Is there a vertex cover of size K or less in G; i.e., is there a set $V^{\prime} \subseteq V$ of at most K vertices such that every edge $e \in E$ has at least one endpoint in V^{\prime} ?

Disjoint connecting paths

INSTANCE: Graph G, collection of disjoint vertex pairs $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$.
QUESTION: Does G contain k mutually vertex disjoint paths, connecting s_{i} and t_{i} for each $i=$ $1, \ldots, k$?

3-dimensional matching

INSTANCE: Three disjoint sets of elements X, Y, Z, with $|X|=|Y|=|Z|=q$, collection $\mathcal{S} \subseteq$ $X \times Y \times Z$.
QUESTION: Does \mathcal{S} contain a sub-collection $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of size $\left|\mathcal{S}^{\prime}\right|=q$, such that each element of $X \cup Y \cup Z$ is contained in exactly one set of the sub-collection \mathcal{S}^{\prime} ?

Edge colouring

INSTANCE: Graph $G=(V, E)$ and $K \in \mathbb{Z}_{+}$.
QUESTION: Can each edge be assigned one of K different colours so that edges incident to the same vertex get distinct colours? Remains hard for cubic graphs and $K=3$.

Partition into forests

INSTANCE: Graph $G=(V, E)$, positive integer $K \leq|V|$.
QUESTION: Can the vertices of G be partitioned into $k \leq K$ disjoint sets V_{1}, \ldots, V_{k} such that the subgraph induced by V_{i} contains no circuits, for all $1 \leq i \leq k$?

Knapsack

INSTANCE: A finite set U, values $s_{u}, v_{u} \in \mathbb{Z}_{+}$for all $u \in U$ and $B, K \in \mathbb{Z}_{+}$.
QUESTION: Is there a subset $U^{\prime} \subseteq U$ such that

$$
\sum_{u \in U^{\prime}} s_{u} \leq B \quad \sum_{u \in U^{\prime}} v_{u} \geq K
$$

Maximum clique

INSTANCE: Graph $G=(V, E)$ and $K \in \mathbb{Z}_{+}$.
QUESTION: Does G contain a clique (induced complete subgraph) of size K ?

Maximum cut

INSTANCE: A graph $G=(V, E)$ and $K \in \mathbb{Z}_{+}$.
QUESTION: Is there $S \subseteq V$ such that $|\delta(S)| \geq K$?

Minimum cover

INSTANCE: Collection \mathcal{C} of subsets of a set \mathcal{S}, positive integer K.
QUESTION: Does \mathcal{C} contain a cover for \mathcal{S} of size K or less, that is, a subset $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ with $\left|\mathcal{C}^{\prime}\right| \leq K$ and such that $\cup_{c \in \mathcal{C}^{\prime}} C=S$?

