
Discrete Optimization Comprehensive Exam — Spring 2015
Examiners: Joseph Cheriyan and Chaitanya Swamy

Instructions: Unless otherwise stated, do not use results without proofs. If you are asked to state

or prove a result in a part of a question, you may use it without proof in subsequent parts of the

question. The reference CCPS refers to the Cook-Cunningham-Pulleyblank-Schrijver book.

If you are pressed for time it is better to answer some questions completely than to give partial

answers to all questions. Feel free to ask questions if any notation is unclear.

Problem 1: Network flows (22 marks)

Given an undirected graph G = (V,E), say that G has a balanced orientation if one can direct the

edges of E to obtain an arc-set A such that
∣∣|δinA (v)| − |δoutA (v)|

∣∣ ≤ 1 for every node v ∈ V (where

δinA (v) and δoutA (v) denote respectively the incoming and outgoing arcs of v in A).

(a) Formulate the problem of finding a balanced orientation of G as a network-flow problem.

(b) Use the construction in part (a) to show that G always has a balanced orientation. You may

use standard results about flows.

Problem 2: Matroid theory (22 marks)

(a) Let M = (U, I) be a matroid with rank function r : 2U 7→ Z+. Show that r is submodular,

that is, it satisfies r(A) + r(B) ≥ r(A ∩B) + r(A ∪B) for all A,B ⊆ U .

(b) Let D = (N,A) be a directed graph. We say that T = (N,A′), where A′ ⊆ A, is a spanning

tree of D if upon ignoring the directions of the arcs in A′, we get an acyclic edge set that

spans N . (Informally, T is a spanning tree of D if its undirected version is a spanning tree

for the undirected version of D.) Let bv be a nonnegative integer associated with each v ∈ N .

Formulate the problem of determining if D has a spanning tree T with |δinT (v)| ≤ bv for all

v ∈ N as a matroid intersection problem.

(c) Apply the matroid-intersection theorem to the construction in part (b) to show that D has a

spanning tree T with |δinT (v)| ≤ 1 for all v ∈ N if and only if∣∣{v /∈ S : δinD(v) 6= ∅}
∣∣ ≥ |N \ S| − 1 + κ(S) for all S ⊆ N s.t. δinD(S) = ∅.

Here κ(S) is the number of components of
(
S, {(u, v) ∈ A : u, v,∈ S}

)
when one ignores

the directions of the arcs.
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Problem 3: Matching theory (22 marks)

(a) Write down a linear programming formulation (P) for the minimum-weight perfect matching

problem, and write down the dual (D) of (P). State the Perfect Matching Polytope Theorem.

(b) State the Tutte-Berge formula, and prove the formula using the termination conditions of the

Blossom algorithm for maximum matching. Make sure to state the relevant conditions that

hold at the termination of the algorithm.

(c) Recall that a vertex is essential if it is covered by all maximum matchings. Suppose that

A∗ ⊆ V is a minimizer of the Tutte-Berge formula. Show that each vertex v ∈ A∗ is essential.

Problem 4: Polyhedral theory (22 marks)

Let P = {x ∈ Rn : Ax ≤ b} be a non-empty polytope. You may use any result from the CCPS

book (except the one you are asked to prove) to answer the following parts.

(a) Prove that F is a face of P if and only if F = {x ∈ P : A′x = b′} for some subsystem

A′x ≤ b′ of Ax ≤ b.

(b) Prove that if x̂ is an extreme point of a face of P , then x̂ is an extreme point of P .

Problem 5: Complexity (12 marks)

For each of the following problems, either indicate that the problem is NP-hard, or that it admits

a polynomial-time algorithm. In the former case indicate a reduction from a well-known NP-hard

problem; in the latter case, indicate briefly how the problem can be solved using results from

CCPS. You may assume that the following problem is NP-hard:

MULTIWAY CUT: Given a graph G = (V,E), a subset T ⊆ V of terminals, and an integer K,

determine if there is a subset F ⊆ E of at most K edges whose removal disconnects every pair

of terminals.

(a) Given a graph G = (V,E), pairs of nodes (s1, t1), (s2, t2), . . . , (s`, t`), and an integer K,

determine if there is a subset F ⊆ E of at most K edges that intersects every si-ti path for all

i = 1, . . . , `.

(b) Given a graph G = (V,E) with integer edge-weights we for every edge e, find an optimal

solution to the following LP-relaxation of (a weighted version of) the problem in part (a):

min
∑
e∈E

wexe s.t. x(P ) ≥ 1 ∀ si-ti paths P , ∀i = 1, . . . , `

0 ≤ xe ≤ 1 ∀ e ∈ E.
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