First Stage Comprehensive Examination in Enumeration
 Department of C\&O, U. Waterloo
 Monday, June 19, 2017, 1:00-4:00 pm, MC 4044

Kevin Purbhoo and David Wagner, examiners

Answer as many questions as time permits. Each question part is worth 10 points (total: 90 points).

1. An R-sequence is a sequence $\left(c_{1}, \ldots, c_{n}\right)$ of integers $c_{i} \geq-1$ such that $c_{1}+\cdots+c_{n}=0$ and for all $1 \leq i<n, c_{1}+\cdots+c_{i} \geq 0$. For each $n \in \mathbb{N}$, determine the number of R -sequences of length n.
2. Let $\phi: X \rightarrow X$ be an endofunction. A vertex $v \in X$ is recurrent if there is some positive integer $k \geq 1$ such that $\phi^{k}(v)=v$. Let \mathcal{Q} be the species (class) of endofunctions $\phi: X \rightarrow X$ such that if $v \in X$ has $\left|\phi^{-1}(v)\right| \geq 2$, then v is recurrent. Obtain a formula for the exponential generating function

$$
Q(x)=\sum_{n=0}^{\infty}\left|Q_{n}\right| \frac{x^{n}}{n!} .
$$

(Note: Q_{n} denotes the set of all such endofunctions when $X=\{1,2, \ldots, n\}$.)
3. Let \mathcal{R} be the species (class) of rooted labelled trees (RLTs). Let $c_{k}(T, v)$ denote the number of nodes with exactly $k \in \mathbb{N}$ children in a RLT (T, v). Let $\bar{c}_{k}(n)$ denote the average value of $c_{k}(T, v)$ among all n^{n-1} RLTs on the set $\{1,2, \ldots, n\}$.
(a) Obtain an expression which determines the exponential generating function

$$
R(x, y)=\sum_{n=0}^{\infty}\left(\sum_{(T, v) \in \mathcal{R}_{n}} y^{c_{k}(T, v)}\right) \frac{x^{n}}{n!} .
$$

(b) Show that for $0 \leq k \leq n$,

$$
\bar{c}_{k}(n)=\frac{n^{2}}{(n-1)^{k+1}}\binom{n-1}{k}\left(1-\frac{1}{n}\right)^{n} .
$$

4. For $n, k \in \mathbb{N}$, let $a_{n, k}$ denote the number of lattice paths starting at $(0,0)$ and ending at (n, n), such that all points (x, y) on the path satisfy $x \leq y \leq x+k$.

Let $A_{k}(t)=\sum_{n \geq 0} a_{n, k} t^{n}$. Find a recurrence relation for $A_{k}(t), k \geq 1$. Hence, or otherwise, prove that

$$
A_{k}(t)=\frac{\sum_{m=0}^{\left\lfloor\frac{k}{2}\right\rfloor}(-1)^{m}\binom{k-m}{m} t^{m}}{\sum_{m=0}^{\left\lfloor\frac{k+1}{2}\right\rfloor}(-1)^{m}\binom{k+1-m}{m} t^{m}} .
$$

5. For $m, n, k \in \mathbb{N}$, let $a(m, n, k)$ denote the number of m-by- n matrices with entries in $\{0,1\}$, with no rows or columns consisting entirely of 0 s , and with exactly $k 1 \mathrm{~s}$. Consider the generating series

$$
A(x, y, z)=\sum_{m, n, k \in \mathbb{N}} a(m, n, k) \frac{x^{m}}{m!} \frac{y^{n}}{n!} z^{k}
$$

(a) Explain why

$$
A(x, y, z)=\exp (-x-y) \sum_{m, n \in \mathbb{N}}(1+z)^{m n} \frac{x^{m}}{m!} \frac{y^{n}}{n!}
$$

(b) From part (a) or otherwise, derive a partial differential equation satisfied by $A(x, y, z)$, and show that $\{a(m, n, k): m, n, k \in \mathbb{N}\}$ satisfies a linear recurrence relation.
6. Let \mathcal{S}_{n} denote the set of permutations of $\{1,2, \ldots, n\}$. A permutation $\sigma \in \mathcal{S}_{n}$ has a descent at position i if $\sigma(i)>\sigma(i+1)$.
(a) Let $1 \leq a_{1}<a_{2}<\cdots<a_{m} \leq n-1$ be integers. Use Inclusion/Exclusion to show that the number of permutations in \mathcal{S}_{n} with descents at the positions $a_{1}, a_{2}, \ldots, a_{m}$ and nowhere else is

$$
n!\sum_{j=0}^{m}(-1)^{m-j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j}=m} \prod_{\ell=1}^{j+1} \frac{1}{\left(a_{i_{\ell}}-a_{i_{\ell-1}}\right)!}
$$

In the product, we make the convention that $a_{i_{0}}=0$ and $a_{i_{j+1}}=n$.
(b) Let $A=\left(A_{i j}\right)_{i, j=0, \ldots, m}$ be the matrix

$$
A_{i j}= \begin{cases}\frac{1}{\left(a_{j+1}-a_{i}\right)!} & \text { if } j+1 \geq i \\ 0 & \text { otherwise }\end{cases}
$$

where $a_{0}=0$ and $a_{m+1}=n$. Prove that the summation in part (a) is equal to $n!\operatorname{det}(A)$.

